首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 206 毫秒
1.
In the system Bi-0212 the carrier concentration can be changed by both cation substitution and oxygen content. The crystal structure of Ca substituted material was refined from neutron powder diffraction data for Bi0.5Sr1.5Ca0.5Y0.5Cu1.5Fe0.5Oy. It is shown that extra oxygen is introduced in the cation layers between the double sheets of Cu/O pyramids. In superconducting material the familar dependence ofT c on the hole carrier concentration is observed. The higherT c is situated at 75 K.  相似文献   

2.
The influence of ion bombardment on the superconducting transition temperature Tc and the structure of thin evaporated niobium layers has been investigated as a function of ion species and layer purity. Irradiation through pure layers with neon ions and fluences of typically 1016 ions/cm2 leads to relatively small Tc decreases (δTc × 0.5 K), while in oxygen contaminated layers larger effects depending on oxygen concentration are observed. Homogeneous implantation of chemically active impurities (nitrogen, oxygen) also drastically depresses Tc reaching the detection limit of 1.2K at a concentration of 15 at. %N. The Tc depressions correlate with a lattice parameter expansion of the Nb bcc structure at a rate of about 0.1 %per 1 at. % impurity.  相似文献   

3.
(Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 (M=Co, Ni and Zn) have been synthesized and investigated by means of X-ray diffraction, scanning electron microscope, electrical resistivity and magnetic susceptibility measurements. X-ray diffraction patterns show that all studied samples contain the nearly single ‘1212’ phase. They crystallize in a tetragonal unit cell with a=3.8028-3.8040 Å and c=12.0748-12.1558 Å. In (Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 system (M=Co or Ni), the superconducting critical temperature Tc decreases linearly with both Co and Ni concentrations and the rate of Tc decrease is around −6.5 and −7.0 K/at%, respectively. For (Tl0.5Pb0.5)Sr2Ca (Cu2−xZnx)O7 system, the dependence of Tc on the Zn dopant concentration deviates from a linear behavior and the Zn substitution suppresses Tc much less (−2.5 K/at%) than the Co and Ni substitutions. The suppression in Tc in Co and Ni doped samples are attributed to the magnetic pair-breaking mechanism and the reduction in the carrier concentration. The suppression of Tc in Zn doped samples is not caused by the reduction in carrier concentration which should remain constant, but rather due to nonmagnetic pair-breaking mechanism induced by disorder as well as the filling of the local Cu dx2y2 state due to the full d band of Zn ions.  相似文献   

4.
The central position and the infrared absorption coefficient of the 9 m band of Si samples were measured with Fourier transform infrared spectroscopy (FTIR) at temperatures from T=77 K to 775 K. The infrared absorption coefficients were corrected by considering background absorption and free carrier absorption calculated from the increased free carrier concentration and from the resistivity determined from Hall effect measurements. We found the central position of the 9 m band to shift to longer wavelengths with increasing temperature. The concentration [Oi] of interstitial oxygen is almost constant for T<600 K, but decreased rapidly for T>600 K. These results verified there are two types of thermal configurations of oxygen in silicon: The bonded Si2O configuration with a binding energy E b0.8 to 1.0 eV at T77 K to 600 K, and the Si2O configuration coexists with a quasi-free interstitial oxygen (QFIO) state for T>600 K. The lattice potential barrier E L, which retards QFIO atoms from migrating in the lattice, is estimated to be 1.5 to 1.6 eV. From these configurations the anomalous diffusivity of oxygen in silicon can be explained quite well.  相似文献   

5.
Electrical properties and defect model of tin-doped indium oxide layers   总被引:5,自引:0,他引:5  
Tin-doped In2O3 layers were prepared by the spray technique with doping concentrationsc Sn between 1 and 20 at. % and annealed at 500 °C in gas atmospheres of varying oxygen partial pressures. The room-temperature electrical properties were measured. Maximum carrier concentrationsN=1.5×1021cm–3 and minimum resistivities =1.3×10–4 cm are obtained if the layers are doped withc Sn9 at. % and annealed in an atmosphere of oxygen partial pressurep O2 10–20 bar. At fixed doping concentration, the carrier mobility increases with decreasing oxygen pressure. The maximum obtainable mobility can be described in terms of electron scattering by ionized impurities. From an analysis of the carrier concentration and additional precision measurements of the lattice constants and film thicknesses, a defect model for In2O3:Sn is developed. This comprises two kinds of interstitial oxygen, one of which is loosely bound to tin, the other forming a strongly bound Sn2O4 complex. At low doping concentrationc Sn4 at. % the carrier concentration is governed by the loosely bound tin-oxygen defects which decompose if the oxygen partial pressure is low. The carrier concentration follows from a relationN=K 1 ·p O2 –1/8 ·(3 ×1010 × cSnN)1/4 with an equilibrium constantK 1=1.4×1015 cm–9/4bar1/8, determined from our measurements.  相似文献   

6.
7.
Mn1−xZnxFe2O4 (with x   varying from 0.1 to 0.5) ferrite nanoparticles used for ferrofluid preparation have been prepared by chemical co-precipitation method and characterized. Characterization techniques like elemental analysis by atomic absorption spectroscopy and spectrophotometry, thermal analysis using simultaneous TG-DTA, XRD, TEM, VSM and Mossbauer spectroscopy have been utilized. The final cation contents estimated agree with the initial degree of substitution. The Curie temperature (TcTc) and particle size decrease with the increase in zinc substitution. In the case of particles with higher zinc concentration, both ferrimagnetic nanoparticles and particles exhibiting superparamagnetic behavior at room temperature are present. In addition, some of the results obtained by slightly altering the preparation condition are also discussed. The precipitated particles were used for ferrofluid preparation. The fine particles were suitably dispersed in heptane using oleic acid as the surfactant. The volatile nature of the carrier chosen helps in altering the number concentration of the magnetic particles in a ferrofluid. Magnetic properties of the fine particles and ferrofluids are discussed. Ferrofluids having Mn0.5Zn0.5Fe2O4 particles can be used for the energy conversion application utilizing the magnetically induced convection for thermal dissipation.  相似文献   

8.
It is shown here, that the superconducting (SC) R1.5Ce0.5RuSr2Cu2O10-δ (RCeRuSCO, R= Eu and Gd) materials (Tc ~ 32 and 42 K) are also antiferromagnetically (AFM) ordered at T N(Ru) ~ 122 and 180 K, respectively, thus, TN ? Tc, a trend which is contrary to that obtained in “magnetic‐SC” intermetallic systems. Mössbauer spectroscopy (MS) on 0.5% 57Fe doped samples shows that all Fe ions reside in the Ru site which is magnetically ordered, whereas SC is confined to the CuO2 planes. On the other hand, for Y1.5Ce0.5FeSr2Cu2O9 (YCeFSCO) no SC is found and the Cu–O planes order AFM at T N(Cu)=31 K. MS studies reveal two in equivalent Fe sites, and that Fe resides predominantly (60%) in the Cu(1) site. In both sites, the Fe does not order magnetically, and the low T N(Cu) obtained is due to frustration of the Cu moments by the presence of Fe. T N is sensitive to oxygen concentration and shifts toward 260 K when oxygen is depleted.  相似文献   

9.
Roles of the blocking layer that we named the layer which separates Cu–O2 layers more than 6Å have been studied by comparing two kinds of highT c copperoxide superconductors such as Bi(2212) and La(2126) compound. These following results have been obtained. The hole concentration decreases when Sr is substituted by La and increases when Bi is substituted by Pb in Bi(2212), and it can be optimized by these substitution. In La(2126)T c becomes up to 43K and the hole concentration (p;[Cu–O]+p) increases to 0.09 by the substitution of Ca for La and heat treatment under high oxygen partial pressure. The distance between Cu–O2 layers in both Bi(2212) and La(2126) are not changed by these substitution and heat treatment. We have found that the blocking layer has not direct roles for the maximumT c value of the material though by supplying carriers to Cu–O2 layers, it affects the actualT c value.  相似文献   

10.
In order to reveal the role of “carrier doping” in the iron-based superconductors, we investigated the transport properties of the oxygen-deficient iron-arsenides LnFeAsO1−y (Ln=La, Ce, Pr and Nd) over a wide doping range. We found that the effect of “doping” in this system is mainly on the carrier scattering rather than carrier density, quite distinct from that in high-Tc cuprates. In the case of La system with lower Tc, the low temperature resistivity is dominated by T2 term and fairly large magnetoresistance is observed. On the other hand, in the Nd system with higher Tc, carriers are subject to stronger scattering showing nearly T-linear resistivity and small magnetoresistance. Such strong scattering appears intimately correlated with high-Tc superconductivity in the iron-based system.  相似文献   

11.
The Hall mobility of undoped n-type conducting SrTiO3 single crystals was investigated in a temperature range between 19 and 1373 K. Field calculations were used to estimate the influence of sample shape and electrode geometry on the measured values. Between 19 and 353 K samples, which were quenched under reducing conditions, show an impurity scattering behavior at low temperature and high carrier concentrations and a phonon scattering mechanism at room temperature. In this temperature region, no carrier-density-dependent mobility was found. In conjunction with measurements of the mass difference before and after reoxidation, the oxygen deficiency and the oxygen vacancy concentration could be determined. The oxygen vacancies proved to be singly ionized. Above 873 K, Hall mobility and carrier concentration had been determined as a function of both oxygen partial pressure and temperature for the first time. In this temperature range the mobility does not depend on carrier concentration, but shows aT –1.5 dependence.  相似文献   

12.
We have studied the influence of oxygen on the superconducting properties of thin films of lead, indium and tin deposited on glass or sapphire substrates. In addition, the morphological microstructure was investigated by scanning electron microscopy. The film thickness was 1.0 μm, and the partial pressure of O2 during the film deposition was raised up to 1×10−4 Torr. In all three materials the development of a granular structure and a strong increase in the residual electric resistivity was observed due to the O2-treatment. Whereas in the Pb films no change of the critical temperature was found, the In films deposited on glass substrates showed a slight increase ofT c due to the oxygen. The strongest increase ofT c (up to 8%) was observed in the O2-treated Sn films. These results are discussed in terms of the McMillan theory. From our measurements of the critical current densityj c we conclude that edge pinning is dominant in the undoped films. All three materials showed a strong increase ofj c due to the O2-treatment which must be interpreted in terms of bulk pinning.  相似文献   

13.
We have compared the electrical and magnetic properties of Ru(Gd1.5−x Pr x )Ce0.5Sr2Cu2O10−δ (Pr/Gd samples) with x = 0.0, 0.01, 0.03, 0.033, 0.035, 0.04, 0.05, 0.06, 0.1 and RuGd1.5(Ce0.5−x Pr x ) Sr2 Cu2O10−δ (Pr/Ce samples) with x = 0.0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, 0.2 prepared by the standard solid-state reaction technique. We obtained the XRD patterns for different samples with various x. The lattice parameters versus x for different substitutions have been obtained from Rietveld analysis. To determine how the magnetic and superconducting properties of these layered cuprate systems can be affected by Pr substitution, the resistivity, and magnetoresistivity, with H ext varying from 0.0 to 15 kOe, have been measured at various temperatures. Superconducting transition temperature T c and magnetic transition T irr , have been obtained through resistivity and ac susceptibility measurements. The T c suppression due to Pr/Gd and Pr/Ce substitutions show competition between pair breaking by magnetic impurities, hole doping due to different valances of ions, difference in ionic radii, and oxygen stoichiometry. Pr/Gd substitution suppresses superconductivity more rapidly than for Pr/Ce, showing that the effect of hole doping and magnetic impurity pair breaking is stronger than the difference in ionic radii. In Pr/Gd substitution, the small difference between the ionic radii of Pr3+,4+ and Gd3+, and absorption of more oxygen due to the higher valence of Pr with respect to Gd, decreases the mean Ru-Ru distance, and as a result, the magnetic exchange interaction becomes stronger with the increase of x. However, Pr/Ce substitution has the opposite effect. The magnetic parameters such as H c , obtained through magnetization measurements versus applied magnetic field isotherm at 77 K and room temperatures, become stronger with x in Pr/Gd and weaker with x in Pr/Ce substitution.  相似文献   

14.
Superconductivity in ternary metallic glasses has been investigated using the model pseudopotential approach, which has been found quite successful in explaining superconductivity in metals, binary alloys and binary glasses. It is observed that this simple methodology successfully explains superconducting behaviour of ternary glasses without requiring the solution of Dirac equation for a many body problem or estimation of various interactions as required in ab-initio pseudopotential theory. In the present work superconducting state parameters of fourteen metallic glasses of (Ni-Zr)-M system (M=Ti, V, Co, Cu) have been determined in the BCS-Eliashberg-McMillan framework. It is observed that addition of V, Co, and Cu as the third element (M) to a binary metallic glass (Ni33 Zr67) causes the parameters λ,T c, α, andN 0 V to decrease, and Coulomb pseudopotential (μ*) to increase with concentration of M, showing that the presence of third element (M) causes suppression of superconducting behaviour of the alloy. The decrease inT c with increasing concentration of third element (M) may be attributed to the modifications in density of states at the Fermi levelN(E F), and probable changes in the band structure of the alloy due to addition of the third element (M). Slight difference is noticed when Ti is added to the Ni33 Zr67 alloy. In this caseT c rises initially and then decreases with concentration of M, showing a peak at aboutx=0.05. This indicates that on addition of Ti, 3d states grow near the Fermi level and hence contribute substantially toN(E F), favouring superconducting behaviour in this case. The present results forT c show an excellent agreement with the experimental data. QuadraticT c equations have been proposed, which provide successfully theT c values of ternary metallic glasses under consideration. Paper presented at National Conference on Current Trends in Condensed Matter Research, Warangal, India, September 20–22, 2004.  相似文献   

15.
(1−xy)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics have been prepared by an ordinary sintering technique, and their structure, electrical properties, and temperature characteristics have been studied systematically. The ceramics can be well-sintered at 1050–1150 °C. The increase in K+ concentration decreases the grain-growth rate and promotes the formation of grains with a cubic shape, while the addition of Li+ decreases greatly the sintering temperature and assists in the densification of BNT-based ceramics. The results of XRD diffraction show that K+ and Li+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. As x increases from 0.05 to 0.50, the ceramics transform gradually from rhombohedral phase to tetragonal phase and consequently a morphotropic phase boundary (MPB) is formed at 0.15≤x≤0.25. The concentration y of Li+ has no obvious influence on the crystal structure of the ceramics. Compared with pure Bi0.5Na0.5TiO3, the partial substitution of K+ and Li+ for Na+ lowers greatly the coercive field E c and increases the remanent polarization P r of the ceramics. Because of the MPB, lower E c and large P r, the piezoelectricity of the ceramics is improved significantly. For the ceramics with the compositions near the MPB (x=0.15–0.25 and y=0.05–0.10), the piezoelectric properties become optimum: piezoelectric coefficient d 33=147–231 pC/N and planar electromechanical coupling factor k P=20.2–41.0%. In addition, the ceramics exhibit relaxor characteristic, which probably results from the cation disordering in the 12-fold coordination sites. The depolarization temperature T d shows a strong dependence on the concentration x of K+ and reaches the lowest values at the MPB. The temperature dependences of the ferroelectric and dielectric properties at high temperatures may imply that the ceramics may contain both the polar and non-polar regions at temperatures above T d.  相似文献   

16.
The model of photoassisted oxygen ordering assumes that the enhancement of the conducting properties of RBa2Cu3O6+x material during the light illumination, is the consequence of the CuOx plane oxygen atoms reordering into long chain fragments, which are known to be better hole dopants than the short ones. Some experimental results suggest that this process is performed mainly through the reaccomodation of the oxygen monomer units (isolated oxygen ions). In the present work concentration of oxygen monomers in the CuOx planes, which is assumed to be equal to the concentration of holes transferred out of the chain planes during the light illumination, is calculated as a function of oxygen content x, and δTc (photoinduced enhancement of the superconducting critical temperature Tc) was estimated for different oxygen concentrations. Numerically found values of the δTc are shown to be in good agreement with experimental findings.  相似文献   

17.
A scan of the superconductor-nonsuperconductor transformation in single crystals of YBa2Cu3O6+x (x≈0.37) is done in two alternative ways, namely, by applying a magnetic field and by reducing the hole concentration through oxygen rearrangement. The in-plane normal-state resistivity ρab obtained in the two cases is quite similar; its temperature dependence can be fitted by a logarithmic law in a temperature range of almost two decades. However, an alternative representation of the temperature dependence of σab=1/ ρ ab by a power law, typical for a 3D material near a metal-insulator transition, is also plausible. The vertical conductivity σc=1/ρc followed a power law, and neither σc(T), nor ρc(T) could be fitted by log T. It follows from the ρc measurements that the transformation at T=0 is split into two transitions: superconductor-normal-metal and normal-metal-insulator. In our samples, they are separated in oxygen content by Δx≈0.025. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 11, 834–839 (10 June 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

18.
The optical spectrum of reduced-T c GdBa2Cu3O7– has been measured for polarizations parallel and perpendicular to theab plane. The sample was an oxygen-deficient single crystal with a large face containing thec axis. The polarized reflectance from this face was measured from 20–300 K in the spectral region from 30–3000 cm–1, with 300 K data to 30000 cm–1. Kramers-Kronig analysis was used to determine the spectral dependence of theab and thec components of the dielectric tensor. The optical properties are strongly anisotropic. Theab-plane response resembles that of other reduced-T c materials whereas thec axis, in contrast, shows only the presence of several phonons. There is a complete absence of charge carrier response alongc aboveand belowT c. This observation allows us to set an upper limit to the free-carrier spectral weight for transport perpendicular to the CuO2 planes.Permanent address: Institute of Physics, CSAV, Prague, Czechoslovakia  相似文献   

19.
R Prakash  O Prakash  N S Tavare 《Pramana》1988,30(6):L597-L600
X-ray and resistivity measurements on YBa2Cu3O7−δ (1-2-3) samples show that for the same but low oxygen concentration,δ⋍0·55, no superconducting transition down to 4·2 K is observed for the tetragonal phase samples while the orthorhombic phase shows aT c ∼ 31 K. The effect of oxygen concentration onT c is isolated.T c=91±1 K has, however, been observed continuously for the normal oxygen annealed samples,δ⋍0·07. The experimental results suggest strongly the necessity of the 1-2-3 compound to be in the orthorhombic phase for the superconducting mechanism to be operative.  相似文献   

20.
对YBa2Cu3-xFexOy(x=00,01,02 )和YBa2Cu2.8Fe0.2Oy(y=705—653 )系列样品的氧含量、霍尔系数和超导电性进 行了系统的研究.结果表明,氧含量的变化对样品中载流子的输运和转移及超导电性有重要 影响;适当增加氧含量可以减缓Cu(1)位元素替代对超导转变温度Tc的抑制;在 CuO2面上参与输运的载流子(空穴)浓度是影响样品超导电性的关键因素.从电 荷转移模型出发 ,结合掺杂离子引起的载流子局域化和离子团簇效应,对载流子浓度随掺杂量和氧含量的变 化从微观结构方面进行了讨论.元素替代量的增加或者氧含量的降低(相同替代量的情况下 )都将导致Cu-O链区的有效氧空位增多,导致替代元素的离子团簇效应和载流子局域化效应 趋于增强,这是引起参与输运的载流子浓度下降,进而导致Tc降低的主要原因. 关键词: 氧含量 霍尔系数 载流子局域化 离子团簇效应  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号