首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The study of charged test particle dynamics in the combined black hole gravitational field and magnetic field around it could provide important theoretical insight into astrophysical processes around such compact object. We have explored the orbital and epicyclic motion of charged test particles in the background of non-rotating Einstein-Æther black holes in the presence of external uniform magnetic field. We numerically integrate the equations of motion and analyze the trajectories of the charged test particles. We examined the stability of circular orbits using effective potential technique and study the characteristics of innermost stable circular orbits. We analyze the key features of quasi-harmonic oscillations of charged test particles nearby the stable circular orbits in an equatorial plane of the black hole, and investigate the radial profiles of the frequencies of latitudinal as well as radial harmonic oscillations in dependence on the strength of magnetic field, mass of the black hole and dimensionless coupling constants of the theory. We demonstrate that the magnetic field and dimensionless parameters of the theory have strong influence on charged particle motion around Einstein-Æther black holes.  相似文献   

2.
In this paper, we construct rotating charged hairy black hole in(2+1) dimensions for infinitesimal black hole charge and rotation parameters. Then we consider this black hole as particle accelerator and calculate the centerof-mass energy of two colliding test particles near the rotating charged hairy black hole in(2+1) dimensions. As we expected, the center-of-mass energy has infinite value.  相似文献   

3.
In this paper, we construct rotating charged hairy black hole in (2+1) dimensions for infinitesimal black hole charge and rotation parameters. Then we consider this black hole as particle accelerator and calculate the center-of-mass energy of two colliding test particles near the rotating charged hairy black hole in (2+1) dimensions. As we expected, the center-of-mass energy has infinite value.  相似文献   

4.
The possibility of converting a Reissner-Nordström black hole into a naked singularity by means of test particle accretion is considered. The dually charged Reissner-Nordström metric describes a black hole only when M2 > Q3 + P2. The test particle equations of motion are shown to allow test particles with arbitrarily large magnetic charge/mass ratios to fall radially into electrically charged black holes. To determine the nature of the final state (black hole or naked singularity) an exact solution of Einstein's equations representing a spherical shell of magnetically charged dust falling into an electrically charged black hole is studied. Naked singularities are never formed so long as the weak energy condition is obeyed by the infalling matter. The differences between the spherical shell model and an infalling point test particle are examined and discussed.  相似文献   

5.
We study the geodesic motions of a test particle around 2 + 1-dimensional charged black holes. We obtain a class of exact geodesic motions for the massless test particle when the ratio of its energy and angular momentum is given by the square root of the cosmological constant. The other geodesic motions for both massless and massive test particles are analyzed using the numerical method.  相似文献   

6.
Total disintegration events produced by 4.5\,A GeV/c $^{16}$O--AgBr interactions are analysed to investigate the characteristics of secondary charged particles produced in such collisions. The multiplicity distributions of grey, black, and relativistic charged particles can be well represented by Gaussian distribution. The average multiplicity of grey particles is found to increase with the mass of projectile increasing, while that of black particles is found to decrease with the mass of projectile increasing. This result is in good agreement with the prediction of fireball model. Finally, the linear dependence between grey and black particles is observed, but there is no distinct dependence between the production of relativistic charged particles and the target excitation.  相似文献   

7.
It has recently been pointed out that, under certain conditions, the energy of particles accelerated by black holes in the center-of-mass frame can become arbitrarily high. In this paper, we study the collision of two particles in the case of four-dimensional charged nonrotating, extremal charged rotating and near-extremal charged rotating Kaluza-Klein black holes as well as the naked singularity case in Einstein-Maxwell-dilaton theory. We find that the center-of-mass energy for a pair of colliding particles is unlimited at the horizon of charged nonrotating Kaluza-Klein black holes, extremal charged rotating Kaluza-Klein black holes and in the naked singularity case.  相似文献   

8.
Neglecting the self-force,self-energy and radiative effects,we follow the spirit of Wald's gedanken experiment and further discuss whether an extremal Kerr-Newman-AdS(KNA)black hole can turn into a naked singularity when it captures charged and spinning massive particles.It is found that feeding a test particle into an extremal KNA black hole could lead to a violation of cosmic censorship for the black hole.  相似文献   

9.
By calculating the change of entropy, we prove that the first law of black hole thermodynamics leads to the tunneling probability of massive particles through the horizon, including the tunneling probability of massive charged particles from the Reissner–Nordström black hole and the Kerr–Newman black hole. Novelly, we find the trajectories of massive particles are close to that of massless particles near the horizon, although the trajectories of massive charged particles may be affected by electromagnetic forces. We show that Hawking radiation as massive particles tunneling does not lead to violation of the weak cosmic-censorship conjecture.  相似文献   

10.
We study Hawking radiation of charged fermions as a tunneling process from charged regular black holes, i.e., the Bardeen and ABGB black holes. For this purpose, we apply the semiclassical WKB approximation to the general covariant Dirac equation for charged particles and evaluate the tunneling probabilities. We recover the Hawking temperature corresponding to these charged regular black holes. Further, we consider the back-reaction effects of the emitted spin particles from black holes and calculate their corresponding quantum corrections to the radiation spectrum. We find that this radiation spectrum is not purely thermal due to the energy and charge conservation but has some corrections. In the absence of charge, e = 0, our results are consistent with those already present in the literature.  相似文献   

11.
Using the Damour-Ruffini method, Hawking radiation of charged particles from squashed charged rotating five-dimensional Kaluza-Klein black holes is investigated extensively. Under the generalized tortoise coordinate transformation, Hawking temperature of the black holes is calculated by using charged scalar particles and Dirac fermions respectively. We find that the obtained Hawking temperature for charged Dirac fermions is the same as for charged scalar particles. What’s more, the spectrum of Hawking radiation contains the information of the size of the extra dimension, which could provide insight for further investigation of large extra dimensions in the future.  相似文献   

12.
We study radiation of scalar particles from charged dilaton black holes. The Hamilton–Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein–Gordon equation. The procedure gives Hawking temperature for these black holes as well.  相似文献   

13.
In this paper we have studied the possibility of the center-of-mass energy of two particles colliding near the horizon of a static charged black hole in string theory. Various cases corresponding to the electric charge and the angular momentum of the particles were considered. The studies were done for the general black hole as well as for the extreme black hole. There were two scenarios where the center-of-mass energy reach very large values if the appropriate properties of the particles are chosen.  相似文献   

14.
We investigate the motion of electrically charged test particles in spacetimes with closed timelike curves, a subset of the black hole or wormhole Reissner–Nordström-NUT spacetimes without periodic identification of time. We show that, while in the wormhole case there are closed worldlines inside a potential well, the wordlines of initially distant charged observers moving under the action of the Lorentz force can never close or self-intersect. This means that for these observers causality is preserved, which is an instance of our weak chronology protection criterion.  相似文献   

15.
Thermal radiation of electrically charged fermions from a rotating black hole with electric and magnetic charges in de Sitter space is considered. The tunneling probabilities for outgoing and incoming particles are obtained and the Hawking temperature is calculated. The relation for the classical action for the particles in the black hole’s background is also found.  相似文献   

16.
Recently, in the series of works a new effect of acceleration of particles by black holes has been found. Under certain conditions, the energy in the center-of-mass system can become infinitely large. The essential ingredient of such effect is the rotation of a black hole. In this work, it has been argued that the similar effect exists for a nonrotating but charged black hole even for the simplest case of radial motion of particles in the Reissner-Nordström background. All main features of the effect under discussion due to rotating black holes have their counterpart for the nonrotating charged ones.  相似文献   

17.
We construct relativistic models of charged dust thick disks for a particular conformastatic spacetime through a Miyamoto–Nagai transformation used in Newtonian gravity to model disk like galaxies. Two simple families of thick disk models and a family of thick annular disks based on the field of an extreme Reissner–Nordström black hole and a Morgan–Morgan-like metric are considered. The electrogeodesic motion of test particles around the structures are analyzed. Also the stability of the particles against radial perturbation is studied using an extension of the Rayleigh criteria of stability of a fluid in rest in a gravitational field. The models built satisfy all the energy conditions.  相似文献   

18.
The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in many microquasars can provide a powerful tool for testing of the phenomena occurring in strong gravity regime. QPOs phenomena can be well related to the oscillations of charged particles in accretion disks orbiting Kerr black holes immersed in external large-scalemagnetic fields. In the present paper we study the model ofmagnetic relativistic precession and provide estimations of the mass and spin of the central object of the microquasar H 1743-322 which is a candidate for a black hole. Moreover, we discuss the possible values of external magnetic field and study its influence on the motion of charged particles around rotating black hole.  相似文献   

19.
In this paper, we derive the deformed Hamilton-Jacobi equations from the generalized Klein-Gordon equation and generalized Dirac equation. Then, we study the tunneling rate, Hawking temperature and entropy of the higher-dimensional Reissner-Nordström de Sitter black hole via the deformed Hamilton-Jacobi equation. Our results show that the deformed Hamilton-Jacobi equations for charged scalar particles and charged fermions have the same expressions. Besides, the modified Hawking temperatures and entropy are related to the mass and charge of the black hole, the cosmology constant, the quantum number of emitted particles, and the term of GUP effects β.  相似文献   

20.
Applying Parikh-Wilzcek's semi-classical quantum tunneling model, we study the Hawking radiation of charged particles as tunneling from the event horizon of a cylindrically symmetric black hole in anti-de Sitter space-time. The derived result shows that the tunneling rate of charged particles is related to the change of Bekenstein-Hawking entropy and that the radiation spectrum is not strictly pure thermal after taking the black hole background dynamical and self-gravitation interaction into account, but is consistent with the underlying unitary theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号