首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe–Strogatz transformation, Ott–Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.  相似文献   

2.
We show how the fluctuating part of the residual coupling between collective and intrinsic motion of a dissipative heavy-ion collision induces correlations in either subspace. They lead in general to a transport equation for the collective motion, and to a new term in the equation for the one-body density which describes collisions with the collective fluctuations. The resulting redistribution of the single-particle occupation numbers ρα and the evolution of the fluctuations are coupled with each other due to the dependence of the transition rates in the master equation on the fluctuations, and of the transport coefficients on ρα. Considering the special case of a long contact phase, we find the fluctuations to be most effective, with respect to a randomization of ρα, within a certain critical region where they pass from stable to unstable behaviour. Estimates are made for the corresponding relaxation times employing a schematic model.  相似文献   

3.
The main objective of this paper is to examine in some detail the dynamics and fluctuations in the critical situation for a simple model exhibiting bistable macroscopic behavior. The model under consideration is a dynamic model of a collection of anharmonic oscillators in a two-well potential together with an attractive mean-field interaction. The system is studied in the limit as the number of oscillators goes to infinity. The limit is described by a nonlinear partial differential equation and the existence of a phase transition for this limiting system is established. The main result deals with the fluctuations at the critical point in the limit as the number of oscillators goes to infinity. It is established that these fluctuations are non-Gaussian and occur at a time scale slower than the noncritical fluctuations. The method used is based on the perturbation theory for Markov processes developed by Papanicolaou, Stroock, and Varadhan adapted to the context of probability-measure-valued processes.  相似文献   

4.
An exact dynamical renormalization approach in differential form is proposed for kinetic van der Waals spin systems with general many-body interactions. The problem of restoring covariance in the evolution equation after renormalization of the model is solved by introducing a suitable renormalized time parameter, which depends also on the magnetization of the spin configuration. The study of the behavior of this renormalized time near criticality leads to a scaling relation for the linear relaxation time. This relation can be shown to imply the exact results for the dynamical critical behavior of the system.On leave of absence from Instituto di Fisica e Unità G.N.S.M. del C.N.R., Università di Padova, Padova, Italy.  相似文献   

5.
A population of identical nonlinear oscillators, subject to random forces and coupled via a mean-field interaction, is studied in the thermodynamic limit. The model presents a nonequilibrium phase transition from a stationary to a time-periodic probability density. Below the transition line, the population of oscillators is in a quiescent state with order parameter equal to zero. Above the transition line, there is a state of collective rhythmicity characterized by a time-periodic behavior of the order parameter and all moments of the probability distribution. The information entropy of the ensemble is a constant both below and above the critical line. Analytical and numerical analyses of the model are provided.  相似文献   

6.
A statistical mechanical theory is presented for the self-organization of a macroscopic oscillation with the presence of external fluctuations in a system of Van der Pol oscillators coupled through dissipative interactions. Starting from Langevin equations for the Van der Pol oscillators, the static and dynamic characteristics are studied. The threshold condition is given by the relative size between the fluctuation and the interaction. The transitions between synchronous and asynchronous phases are well discussed by a Landau-type equation. The steady state value of the order parameter and the onset time are compared between the theory and the computer experiments and a good agreement is obtained.  相似文献   

7.
8.
The influence of nonequilibrium initial values of the order parameter on its evolution at a critical point is described using a renormalization group approach of the field theory. The dynamic critical exponent θ of the short time evolution of a system with an n-component order parameter is calculated within a dynamical dissipative model using the method of Σ-expansion in a three-loop approximation. Numerical values of θ for three-dimensional systems are determined using the Padé-Borel method for the summation of asymptotic series.  相似文献   

9.
10.
利用张量网络表示的无限矩阵乘积态算法研究了含有Dzyaloshinskii-Moriya (DM)相互作用的键交替海森伯模型的量子相变和临界标度行为.基于矩阵乘积态的基态波函数计算了系统的量子纠缠熵及非局域拓扑序.数据表明,随着键交替强度变化,系统从拓扑有序的Haldane相转变为局域有序的二聚化相.同时DM相互作用抑制了系统的二聚化,并最终打破系统的完全二聚化.另外,通过对相变点附近二聚化序的一阶导数和长程弦序的数值拟合,分别得到了此模型相变的特征临界指数a和b的值.结果表明,随着DM相互作用强度的增强, a逐渐减小,同时b逐渐增大. DM相互作用强度影响着此模型的临界行为.针对此模型的临界性质的研究,揭示了量子自旋相互作用的彼此竞争机制,对今后研究含有DM相互作用的自旋多体系统中拓扑量子相变临界行为提供一定的借鉴与参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号