首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In NaZn13-type LaFe11.4Al1.6C0.02 compound, a signature of weak ferromagnetism is observed at ∼100 K under a low field by ac magnetic-susceptibility and electrical-resistivity measurements, implying the coexistence of ferromagnetic (FM) and antiferromagnetic (AFM) phases. The hysteresis in isofield magnetization curves and large magnetic relaxation demonstrate the metastability of the magnetic state in the AFM-FM transition region. The variations of magnetization with temperature, time and field show distinct step-like behaviors, which is probably attributed to the discontinuous growth of ferromagnetic cluster in antiferromagnetic matrix.  相似文献   

2.
The magnetic behavior of the diluted magnetic semiconductor Cd0.42Mn0.58In2S4 has been study by dc magnetization and ac susceptibility experiments. Zero field cooled and field cooled measurements reveal irreversibility below Tirr=2.60±0.15 K. Ac susceptibility data, performed as a function of the temperature and the frequency, confirm the spin-glass like behavior of the material with Tf=2.75±0.15 K. High temperature susceptibility data follow a typical Curie-Weiss law with θ=−74±1 K which suggests predominant antiferromagnetic interactions. The randomness of the magnetic ions, necessary to explain the magnetic behavior of the material, has been determined by X-ray powder diffraction experiments.  相似文献   

3.
CaMn0.96Mo0.04O3 is an example of Mn4+ rich perovskite manganites, which exhibits a net ferromagnetic component at low temperature, observed by dc magnetization and ac susceptibility. To characterize the magnetic state of this compound, neutron powder diffraction was carried out in the 2-400 K temperature range, showing that it is necessary to use three components (ferromagnetic and G- and A-type antiferromagnetic) to describe it. This particular state is in agreement with the unusual magnetic behaviour observed by macroscopic measurements and is compared to the one observed for manganites with similar Mn valence but obtained by A-site substitution.  相似文献   

4.
王泽温  介万奇 《物理学报》2007,56(2):1141-1145
利用MPMS-7(magnetic property measurement system)型超导量子磁强计对垂直布里奇曼法生长的Hg0.89Mn0.11Te晶片磁化强度变化规律进行了测量.试验采用了两种不同的外场和冷却条件.首先在5 K恒温下,-5200到5200 kA/m范围内改变磁场强度进行了测定.然后维持800 kA/m恒定磁场,分别在有场冷却和无场冷却条件下,从5到300 K范围内改变温度,研究了变温条件下的磁化特性.并采用分子场近似模型,用类布里渊函数,最小二乘法对磁化强度随磁场强度变化的实验结果进行拟合和分析,结果表明,Mn2+离子之间存在反铁磁相互作用.磁化率和温度关系分析表明:在测试范围内Hg0.89Mn0.11Te是单一的顺磁相,在高温区磁化率和温度服从居里-万斯定律,呈线性关系,低于40 K时,磁化率和温度的关系偏离居里-万斯定律,表现出顺磁增强现象. 关键词: 0.89Mn0.11Te')" href="#">Hg0.89Mn0.11Te 磁化强度 磁化率 类布里渊函数  相似文献   

5.
We have investigated the magnetic, electrical transport and electron spin resonance (ESR) properties of polycrystalline Fe-doped manganite LaMn0.7Fe0.3O3+δ prepared by sol–gel method. A typical cluster-glass feature is presented by DC magnetization and AC susceptibility measurements and a sharp but shallow memory effect was observed. Symmetrical Lorentzian lines of the Mn/Fe spectra were detected above 120 K, where the sample is a paramagnetic (PM) insulator. When the temperature decreases from 120 K, magnetic clusters contributed from ferromagnetic (FM) interaction between Mn3+ and Mn3+/Fe3+ ions develop and coexist with PM phase. At lower temperature, these FM clusters compete with antiferromagnetic (AFM) ones between Fe3+ ions, which are associated with a distinct field-cooled (FC) effect in characteristic of cluster-glass state.  相似文献   

6.
Polycrystalline (U0.50Dy0.50)Ni2B2C solid solution was prepared and found by X-ray diffraction to crystallize in BCT LuNi2B2C-type structure (space group I4/mmm) of the end compounds UNi2B2C and DyNi2B2C. AC susceptibility and magnetization show paramagnetic behavior down to 6.5 K, with the values θ=−5(5) K and μeff=7.7(1) μB, compatible with those of the end compounds, and indicate possible cooperative phenomena at lower temperatures. The observed paramagnetism, at variance with antiferromagnetic ordering in (Pr0.50Dy0.50)Ni2B2C, is attributed to a directional frustration of the magnetic moments on the (U,Dy) site.  相似文献   

7.
Magnetic properties of SrCo2V 2O8 single crystal are investigated by means of ac magnetic susceptibility, dc magnetization and heat capacity measurements. The results show that SrCo2V 2O8 possesses two canted antiferromagnetic transitions at ∼5 and ∼3 K, which is different from isostructural BaCo2V 2O8 with only one antiferromagnetic transition at ∼5 K. We suggest that such different magnetic properties are mainly due to their different structural symmetry.  相似文献   

8.
Prussian Blue analog K1.14Mn[Fe(CN)6]0.88 nanocubes were synthesized by using polyvinyl pyrrolidone (PVP) as a protective matrix. The PVP-protected MnFe PBA nanocubes with face centered cubic structure are well dispersed with a narrow size distribution of around 50 nm. A spin-glass behavior (including hysteresis, a peak in the zero-field-cooled magnetization and frequency-dependent AC magnetic susceptibility) is observed in the nanoparticles. A possible origin of this spin-glass freezing is discussed. Spin disorder due to the structural defects may be the reason that causes the spin-glass freezing in the MnFe PBA nanoparticles.  相似文献   

9.
The dc magnetization and ac susceptibility measurements on two dimensional layered manganite La1.2Ba1.8Mn2O7 samples reveal the occurrence of ferromagnetism above room temperature with ferromagnetic (FM) to paramagnetic (PM) transitions at 338 K. The bifurcation temperatures shown by the zero-field cooled (ZFC) and field cooled (FC) dc magnetization curves at high temperatures shift towards lower temperatures as the applied field is increased from 100 to 2500 Oe. The data are suggestive of a large magnetic anisotropy due to the strong competing ferromagnetic and antiferromagnetic interactions resulting in a spin-glass-like state. Ru doping is found to enhance the ferromagnetism and metallicity of the system in a remarkable way. The magnetoresistance (MR) values obtained are very high and about 40% even at 260 K for the undoped sample.  相似文献   

10.
On the basis of successful theoretical explanation of the observed large magnetic-field effect (by ∼7% with 1.5 T) on the dielectric constant below the Néel temperature TN of 5.5 K, we have demonstrated convincingly the magnetoelectric effect in an antiferromagnetic quantum paraelectric EuTiO3 system. The mutual control of electric and magnetic properties is revealed by the variation of the electric-field-induced polarization with applied magnetic fields as well as the change of the magnetic-field-induced spin moments under the control of electric fields. It is found that the applied electric field (magnetic field) acts like a fictitious magnetic field (electric field) on the EuTiO3 system. The magnetoelectric susceptibility is deduced to be proportional to the product of the magnetization, electrical polarization, magnetic susceptibility and dielectric susceptibility.  相似文献   

11.
Magnetic and EPR data have been collected for complex [Cu(L-Arg)2](NO3)2·3H2O (Arg=arginine). Magnetic susceptibility χ in the temperature range 2-160 K, and a magnetization isotherm at T=2.29(1) K with magnetic fields between 0 and 9 T were measured. The observed variation of χT with T indicates predominant antiferromagnetic interactions between Cu(II) ions coupled in 1D chains along the b axis. Fitting a molecular field model to the susceptibility data allows to evaluate g=2.10(1) for the average g-factor and J=−0.42(6) cm−1 for the nearest neighbor exchange coupling (defined as Hex=-∑JijSi·Sj). This coupling is assigned to syn-anti equatorial-apical carboxylate bridges connecting Cu(II) ion neighbors at 5.682 Å, with a total bond length of 6.989 Å and is consistent with the magnetization isotherm results. It is discussed and compared with couplings observed in other compounds with similar exchange bridges. EPR spectra at 9.77 were obtained in powder samples and at 9.77 and at 34.1 GHz in the three orthogonal planes of single crystals. At both microwave frequencies, and for all magnetic field orientations a single signal arising from the collapse due to exchange interaction of resonances corresponding to two rotated Cu(II) sites is observed. From the EPR results the molecular g-tensors corresponding to the two copper sites in the unit cell were evaluated, allowing an estimated lower limit |J |>0.1 cm−1 for the exchange interaction between Cu(II) neighbors, consistent with the magnetic measurements. The observed angular variation of the line width is attributed to dipolar coupling between Cu(II) ions in the lattice.  相似文献   

12.
A new mixed magnet, Mn1−xNixCl2·H2O, is examined by dc magnetization and susceptibility measurements across the entire composition range. The pure components are quasi-one-dimensional Heisenberg antiferromagnets ordering at 2.17 K (Mn) and 5.65 K (Ni) due to weaker interchain exchange supplementing the dominant exchange along MCl2MCl2M… chemical and structural chains. High temperature magnetic susceptibilities yield Curie and Weiss constants in χM=C/(Tθ). C(x) is linear but θ(x) displays curvature, which is analyzed to show that unlike-ion exchange is ferromagnetic and similar in size to like-ion. Most notable is the absence of antiferromagnetic susceptibility maxima down to 1.6 K from x=0.10 to 0.95. For x=0.05 a susceptibility maximum appears, with Tmax almost 20% lower than in the pure Mn component but Tc reduced by 2%. The size of the susceptibility is enhanced by admixture, the effect of disrupted antiferromagnetic tendencies. Magnetization isotherms evolve with composition. Larger values of magnetization, under the same measuring conditions, occur for mixtures than for pure components, consistent with frustration, which weakens antiferromagnetic alignment tendencies. The competing ferromagnetic (Ni) and antiferromagnetic (Mn) intrachain interactions, along with disorder and low dimensional characteristics, presumably lead to the absence of magnetic order over a remarkably broad composition range.  相似文献   

13.
Magnetization behavior of (La0.83Bi0.17)0.67Ca0.33MnO3 has been investigated in the temperature range from 100 to 180 K. A metamagnetic transition was observed in the temperature region, where the magnetization was measured after a zero-field-cooling from room temperature to a selected temperature. Experimental results show that, after a higher magnetization route, the field-increasing branches of the magnetization curves shows an unusual training effect: below a magnetic field H0, the applied magnetic field enhances the value of magnetization; however, above H0 the magnetic field suppresses the value, and the behavior cannot be totally attributed to the enhancement effect of the applied magnetic field on ferromagnetic phase fraction. It is proposed that, in the two-phase coexistence region, the higher magnetic field promotes the phase separation and leads to both the fraction of ferromagnetic domain and the stabilization of antiferromagnetic domain increase.  相似文献   

14.
Er3Ir single crystals were grown by the Czochralski method from a levitated melt. The electrical resistivity thermal dependence exhibits ordering temperature of the erbium sublattice at 40 K and a spin reorientation process at 22 K. The DC and AC magnetic susceptibility show antiferromagnetic ordering in the form of an asymmetric peak. The magnetization in strong magnetic fields up to 140 kOe exhibits anisotropy. The lattice parameters’ thermal dependence of Er3Ir and Er3Ni show anisotropy and anomalous behaviour.  相似文献   

15.
Magnetic phase transitions in rare earth intermetallic compound Nd7Rh3 have been investigated using a single crystal. Measurement results of magnetization, magnetic susceptibility, specific heat, and electrical resistivity reveal that Nd7Rh3 has two magnetic phase transitions at TN=34 K, Tt2=9.1 K and a change of the magnetic feature at Tt1=6.8 K in the absence of an external magnetic field. Antiferromagnetic orderings exist in all the three magnetic states; a large magnetic anisotropy between the c-axis and the c-plane is observed. In the magnetic phase below Tt2, an irreversible field-induced magnetic phase transition takes place in the c-plane; after removing external magnetic field, a coexistence state of ferro- and antiferromagnetic ordering or a ferrimagnetic state having a remanent magnetization MR is stabilized. The MR decays to a certain value for several hours after the first process; a magnetic field cooling effect was also observed in the c-plane below Tt2. In the antiferromagentic state above Tt2, the irreversibility disappears and an ordinary antiferromagnetic state takes place. As the origin of this phenomenon, a kind of martensitic structural transition that is observed in Gd5Ge4 can be considered.  相似文献   

16.
In this work the Mn5Si3 and Mn5SiB2 phases were produced via arc melting and heat treatment at 1000 °C for 50 h under argon. A detailed microstructure characterization indicated the formation of single-phase Mn5Si3 and near single-phase Mn5SiB2 microstructures. The magnetic behavior of the Mn5Si3 phase was investigated and the results are in agreement with previous data from the literature, which indicates the existence of two anti-ferromagnetic structures for temperatures below 98 K. The Mn5SiB2 phase shows a ferromagnetic behavior presenting a saturation magnetization Ms of about 5.35×105 A/m (0.67 T) at room temperature and an estimated Curie temperature between 470 and 490 K. In addition, AC susceptibility data indicates no evidence of any other magnetic ordering in 4-300 K temperature range. The magnetization values are smaller than that calculated using the magnetic moment from previous literature NMR results. This result suggests a probable ferrimagnetic arrangement of the Mn moments.  相似文献   

17.
The influence of composition on the structural ordering and magnetism in the VxNb1+yS2 system has been investigated by X-ray diffraction and magnetic measurements. Stoichiometric V1/3NbS2 did not exhibit the structural ordering of vanadium between the NbS2 layers. In the ordered structure, the vanadium composition deviated from the ideal value of to both higher and lower values, while the niobium composition was in the range of 0.05?y?0.18. Excess niobium, y>0, is thought to play an essential role in the structural ordering in this system. For samples with excess niobium and ordered structures, a magnetic transition was observed at 20-50 K, depending on the composition. The spontaneous magnetization of 3-5×10−3 μB/V atom is thought to be intrinsic to this system. The magnetization curves consisted of a constant and a proportional parts of the magnetic field, which correspond to the spontaneous magnetization and high-field susceptibility, respectively. The magnetization curves and the temperature dependencies of the high-field susceptibility were quite similar to those of the canted antiferromagnetic NiS2. A correlation between the structural and magnetic ordering is suggested.  相似文献   

18.
We have studied RNiGe3 (R=Y, Ce-Nd, Sm, Gd-Lu) single crystals by measuring crystal structure and stoichiometry, magnetic susceptibility, magnetization, electrical resistivity, magnetoresistance, and specific heat. Clear anisotropies as well as antiferromagnetic ordering in the RNiGe3 series (R=Ce-Nd, Sm, Gd-Tm) have been observed above 1.8 K from the magnetic susceptibility. A metamagnetic transition in this family (except for R=Sm) was detected at 2 K for applied magnetic fields below 70 kOe. The electrical resistivity of this series follows metallic behavior in the high temperature region. Below the antiferromagnetic ordering temperature a significant anisotropy is exhibited in the resistivity and magnetoresistance for different current directions. The anisotropic magnetic, transport, and thermal properties of RNiGe3 compounds are discussed in terms of Ni site occupancy as well as a combination of the effect of formation of a magnetic superzone gap and the crystalline electric field.  相似文献   

19.
In the present study, spin-glass-like ordering has been observed in the spinel ZnFe2O4 ferrite. Field cooled (FC) and zero-field cooled (ZFC) DC magnetizations display divergence at low temperature, which indicates a frozen state with the freezing temperature of Tf=21 K. Frequency dependence of AC susceptibility measurement was performed on the sample. It shows a peak at around Tf, with the peak position shifting as a function of driving frequency, indicating a spin-glass-like transition of the sample. The sample shows a typical spin-glass behavior with a manifestation of non-equilibrium dynamics of the spin glass, such as aging, rejuvenation and memory effects. These experimental findings indicate that Zn-ferrite exhibits a spin-glass-like phase at low temperature and it is not canted antiferromagnetic.  相似文献   

20.
Magnetization and susceptibility data on PrCo2 and PrCo2H4 are presented. The ac susceptibility of PrCo2 measured in zero dc field displays a sharp and high peak at Tc = (39.9 ± 0.2) K. The magnetization versus temperature curves show ferromagnetic behaviour for B >1 T, but display a maximum at lower values of the applied field. These results, together with the behaviour of the hysteresis loops at different temperatures below Tc, indicate that PrCo2 orders ferromagnetically, the magnetic hardness increasing strongly for T → 0. The saturation moment at 4.2 K equals 3.9 μB per formula unit, as found from the magnetization curve measured in a pulsed-field magnet up to B = 30 T.Similar experiments on PrCo2H4 provide evidence that the introduction of hydrogen in PrCo2 not only destroys the long-range atomic order, but also considerably reduces the ferromagnetic interactions. Such an effect of the hydrogen is commonly observed in cobalt intermetallics. Part of the PrCo2H4 is found to have decomposed into PrH2 and free Co. The clusters of free Co atoms give rise to a maximum in the zero-field ac susceptibility versus temperature curves, similar as observed in spin glasses or magnetic glasses. By increasing the ac frequency, the maximum shifts to higher temperatures. The behavior can be explained in terms of the Néel model for superparamagnetic particles with randomly oriented local anisotropy axes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号