首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 168 毫秒
1.
张俊杰 《物理学报》2014,63(22):224302-224302
运用波传播法对有限和无限周期对边简支复合板的振动带隙衰减特性进行了研究.在建立相邻板结构边界连续方程的基础上, 分别运用传递矩阵和Bloch定理建立了有限和无限周期复合板的耦合运动方程, 并详细对比分析了有限和无限周期复合板带隙衰减特性的关联关系.研究表明: 周期板结构的振动带隙频率范围与激励方式和激励位置是相关的, 若周期复合板在宽度方向按某阶模态进行线激励, 则该激励下的振动带隙与无限周期复合板在该阶模态下的振动带隙是一致的; 若周期板在点激励作用, 则该点激励下的振动带隙是参与振动的各阶模态振动带隙的交集. 此外, 还进一步研究了结构阻尼对振动衰减带隙的影响. 关键词: 周期复合板 带隙衰减特性 波传播法 结构阻尼  相似文献   

2.
本文根据弹性理论最小势能原理和变分技术,确定不同弹性材料层胶合的复合板弯曲运动时的中和面位置,并引人复合板的等效弹性常数和等效质量,从而导出复合薄板弯曲振动方程和边界条件的简洁形式;跟据粘弹性理论还得出:粘弹性层和弹性层复合板的振动方程;采用模态分析和傅里叶变换法给出矩形复合薄板自由振动和强迫振动的一般分析解;以钢板作为基板,进行数值计算得出不同厚度、不同材料覆盖层的复合板的等效刚度、泊松比和面密度,以及简支条件下简正模式的阻尼常数、阻力系数和固有频率。  相似文献   

3.
为探究地铁车辆阻尼环扩张状态对阻尼环车轮声振特性影响,在半消声室内进行阻尼环车轮自由状态下的声振特性实验研究,结合有限元仿真对实验结果进行分析。研究表明,环-轮组合振动固有频率与原车轮相比变化不大,但阻尼环使车轮的模态阻尼比显著增加,有效抑制了车轮各模态的振动幅值。改变阻尼环扩张状态,阻尼环降噪效果发生非线性变化,幅值在5.6 dB(A)之内。阻尼环扩张状态可通过调节非闭合阻尼环两端扩张装置来改变。阻尼环处于非最大扩张状态W_3时,可获得最佳降噪效果。  相似文献   

4.
利用有限元法进行数值模拟,研究了悬垂在针尖上的液滴在二阶模态下的振动情况.结果表明,悬垂液滴的固有振动频率与失重下自由液滴的固有振动频率间存在线性关系,该线性关系与液体的表面张力系数、液体的密度和针直径有关,与液体的黏度和"表面张力系数密度之比"无关;在声场的激励下,液滴的位移共振曲线与受迫振动的标准速度共振曲线在形状上一致,并且阻尼系数与黏度、表面张力系数、针直径呈正相关,而与密度、"表面张力系数与密度之比"呈负相关.最后以水为例将模拟结果与实验数据做了对比,两者符合得很好.  相似文献   

5.
陶建成  邱小军 《应用声学》2009,28(4):283-290
在考虑模态幅度估计时采样点数目要求的基础上,比较了使用振动模态展开法和辐射模态展开法预测辐射声功率对速度传感器的数目要求。对于点力激励的小阻尼简支矩形板,发现激励频率低于第一阶本征频率时,使用辐射模态展开法所需的传感器数目较少;而激励频率在本征频率附近时,使用振动模态展开法所需的传感器数目较少。  相似文献   

6.
张冰瑞  陈克安  丁少虎 《物理学报》2014,63(22):224303-224303
以复杂结构受击振动响应的时域计算为目的, 讨论了结构阻尼的计算方法, 给出一种用于冲击声合成的综合数值方法, 并进行了实验验证. 首先, 考虑到阻尼是影响瞬态振动时变特性的重要因素, 详细讨论了两种模态阻尼的计算方法; 其次, 对阻尼板的受击振动和声辐射进行了时域仿真, 并与时域有限差分法的计算结果进行对比, 显示出两种声音合成方法的计算结果具有高度的一致性; 最后, 针对有限长圆柱壳的受击振动, 将合成声与实验录音进行了对比研究. 结果表明, 合成声与实际录音的时域包络、频谱结构以及衰减趋势基本一致, 证明了采用数值方法进行冲击声合成的有效性. 关键词: 声音合成 模态阻尼 冲击声 数值方法  相似文献   

7.
徐振邦  吴清文 《光学技术》2011,37(6):679-685
反射镜支撑结构通常需要具有一定的柔性来保证其面形精度,但这将引起结构固有频率降低,使得结构抵抗振动的能力下降.针对这一问题,开展了利用阻尼技术改善反射镜支撑结构动态性能的研究.建立了反射镜组件、相机机身和基础耦合的动力学模型,推导出系统传递函数、模态阻尼、振型等参数,并据此进行了理论分析.重点分析了在反射镜部分增加阻尼...  相似文献   

8.
同时考虑一维梁结构的弯曲和轴向振动,对其压电阻抗模型进行建模分析和试验验证。在0.02~42 kHz频段内区分并标记了一维钢梁弯曲振动模态前18阶及轴向振动模态前3阶。结果表明:在0.02~7.5kHz频段内,数值计算和试验结果中谐振峰对应频率的相对误差较大:11.7%~16.5%,其原因可能是低频时振动能量较低且波的传播受结构阻尼、边界条件及环境噪音等因素影响较为明显;在7.5~42kHz范围内,两者谐振峰位置符合良好,相对误差较小:0.11%~2.31%,表明该模型在高频段具有较好的适用性;轴向振动模态对应频率大于弯曲振动模态。本研究为结构健康监测过程中检测频段的选取及损伤信息的提取提供参考。  相似文献   

9.
降低加肋双层圆柱壳辐射噪声线谱的结构声学设计   总被引:1,自引:0,他引:1  
为降低双层圆柱壳辐射噪声线谱,从控制内壳振动响应和衰减壳间振动传递率进行结构声学设计。采用机械阻抗理论分析了环肋圆柱壳模态响应控制机理;由环肋振动方程推导分析了环肋径向机械阻抗特性;基于阻抗失配、波形转换原理提出一种阻抗加强环肋,分析了振动波阻抑特性;利用阻尼减振技术,综合考虑肋板的刚度、阻尼特性,设计了金属橡胶层叠肋板;结合数值计算实例,分析了设计双层壳模型的声辐射性能。结果表明:设计的双层加肋圆柱壳结构能有效降低辐射噪声线谱,在分析频段内辐射声压线谱平均降低约6.6 dB。研究结果对研制低噪声水下航行器具有良好的工程价值和应用前景。  相似文献   

10.
敷设阻尼材料的双层圆柱壳声辐射性能分析   总被引:7,自引:1,他引:6  
研究了外层壳上敷设粘弹性阻尼材料的双层壳体的振动和声辐射性能,采用经典Flugge微分算子描述壳体的运动,敷设粘弹性阻尼材料的双层壳体的粘弹性阻尼层的运动用三维Navier方程描述,将阻尼沿厚度方向的位移用泰勒展开表示,利用位移和应力的连续性边界条件建立振动方程。详细讨论了阻尼层厚度、弹性模量、损耗因子及静水压缩因子等参数对双层壳体振动和声辐射的影响,表明阻尼材料的弹性模量越高,阻尼层越薄,损耗因子越小,壳体的辐射声功率越高;对于较高频率的激励,必需考虑阻尼层质量的影响,选择密度低的阻尼材料对减振降噪有利。  相似文献   

11.
This paper presents an experimental study on the effects of multi-site damage on the vibration response of honeycomb sandwich beams, damaged by two different ways i.e., impact damage and core-only damage simulating damage due to bird or stone impact or due to mishandling during assembly and maintenance. The variation of the modal parameters with different levels of impact energy and density of damage is studied. Vibration tests have been carried out with both burst random and sine dwell testing in order to evaluate the damping estimation efficiency of these methods in the presence of damage. Sine dwell testing is done in both up and down frequency directions in order to detect structural non-linearities. Results show that damping ratio is a more sensitive parameter for damage detection than the natural frequency. Design of experiments (DOE) highlighted density of damage as the factor having a more significant effect on the modal parameters and also proved that sine dwell testing is more suitable for damping estimation in the presence of damage as compared to burst random testing.  相似文献   

12.
This paper is concerned with the experimental evaluation of the performance of viscous damping identification methods in linear vibration theory. Both existing and some new methods proposed by the present authors [A.S. Phani, J. Woodhouse, Viscous damping identification in linear vibration, Journal of Sound and Vibration 303 (3–5) (2007) 475–500] are applied to experimental data measured on two test structures: a coupled three cantilever beam with moderate modal overlap and a free–free beam with low modal overlap. The performance of each method is quantified and compared based on three norms and the best methods are identified. The role of complex modes in damping identification from vibration measurements is critically assessed.  相似文献   

13.
The classical modal analysis is applied to derive the analytical solution and to obtain the free vibration response of damped axially moving wire in this paper. The corresponding eigenvalues, eigenfunctions, and orthogonal relationship are presented. The orthogonality property and closed-form solution of free vibration response with damping are the main contributions of this study. In addition, the analytical modal analysis, with damping factor removed, shows agreement with those in existing research literature of moving wire without damping. The specific relevance of this general solution is discussed with respect to the moving wire in a slurry wiresaw. The theoretical definition of the damping factor of the slurry wiresaw system is also provided.  相似文献   

14.
This paper investigates the frequency dependent viscoelastic dynamics of a multifunctional composite structure from finite element analysis and experimental validation. The frequency-dependent behavior of the stiffness and damping of a viscoelastic material directly affects the system's modal frequencies and damping, and results in complex vibration modes and differences in the relative phase of vibration. A second order three parameter Golla–Hughes–McTavish (GHM) method and a second order three fields Anelastic Displacement Fields (ADF) approach are used to implement the viscoelastic material model, enabling the straightforward development of time domain and frequency domain finite elements, and describing the frequency dependent viscoelastic behavior. Considering the parameter identification a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Agreement between the curve fits using both the GHM and ADF and experiment is within 0.001 percent error. Continuing efforts are addressing the material modulus comparison of the GHM and the ADF model. There may be a theoretical difference between viscoelastic degrees of freedom at nodes and elements, but their numerical results are very close to each other in the specific frequency range of interest. With identified model parameters, numerical simulation is carried out to predict the damping behavior in its first two vibration modes. The experimental testing on the layered composite beam validates the numerical predication. Experimental results also show that elastic modulus measured from dynamic response yields more accurate results than static measurement, such as tensile testing, especially for elastomers.  相似文献   

15.
An Acoustic Black Hole (ABH) effect is a passive vibration reduction technique which takes advantage of properties of wave propagation in thin structures of varying thickness. A practical implementation of ABH on a uniform beam consists in an extremity whose thickness follows a power-law profile covered by a very thin layer of additional damping material. A modal analysis based on a High Resolution technique shows that the ABH significantly increases the Modal Overlap Factor (MOF) of the beam, thus reducing the resonant behaviour of the structure. Further investigations, including a two-dimensional numerical model of the structure based on the finite difference method, show that this MOF can be explained by an increase of the modal density and a high damping of a number of modes of the structure due to the ABH.  相似文献   

16.
In this paper an Euler–Bernoulli model has been used for vibration analysis of micro-beams with large transverse deflection. Thermoelastic damping is considered to be the dominant damping mechanism and introduced as imaginary stiffness into the equation of motion by evaluating temperature profile as a function of lateral displacement. The obtained equation of motion is analyzed in the case of pure single mode motion by two methods; nonlinear normal mode theory and the Galerkin procedure. In contrast with the Galerkin procedure, nonlinear normal mode analysis introduces a nonconventional nonlinear damping term in modal oscillator which results in strong damping in case of large amplitude vibrations. Evaluated modal oscillators are solved using harmonic balance method and tackling damping terms introduced as an imaginary stiffness is discussed. It has been shown also that nonlinear modal analysis of micro-beam with thermoelastic damping predicts parameters such as inverse quality factor, and frequency shift, to have an extrema point at certain amplitude during transient response due to the mentioned nonlinear damping term; and the effect of system?s characteristics on this critical amplitude has also been discussed.  相似文献   

17.
A theoretical framework is presented for predicting the nonlinear damping and damped vibration of laminated composite strips due to large in-plane forces. Nonlinear Green-Lagrange axial strains are introduced in the governing equations of a viscoelastic composite and new nonlinear damping and stiffness matrices are formulated including initial stress effects. Building upon the nonlinear laminate mechanics, a damped beam finite element is developed. Finite element stiffness and damping matrices are synthesized and the static equilibrium is predicted using a Newton-Raphson solver. The corresponding linearized damped free-vibration response is predicted and modal frequencies and damping of the in-plane deflected strip are calculated. Numerical results quantify the nonlinear effect of in-plane loads on structural modal damping of various laminated composite strips. The modal loss-factors and natural frequencies of cross-ply Glass/Epoxy beams subject to in-plane loading are measured and correlated with numerical results.  相似文献   

18.
This paper presents a control strategy for the suppression of vibration due to unknown disturbance forces in large, nonlinear flexible structures. The control action proposed, based on the modal approach, consists of two contributions. The first is the well-known Independent Modal-Space Control, which increases system damping and improves its behavior close to the resonance frequencies. The second is a disturbance estimator, which calculates the modal components of the external forces acting on the system and compensates for them using actuator forces. The system modal coordinates, required by both logics, are estimated through a modal state observer.The proposed control logic is tested on a flexible boom. The paper reports the numerical and experimental results both for the linear and nonlinear (large motion) boom configuration.  相似文献   

19.
The stationary response of a broad class of combined linear systems to stationary random excitation is determined by the normal mode method. The systems are characterized by a viscously damped simple beam (or string, membrane, thin plate or shell, etc.) connected at discrete points to a multiplicity of viscously damped linear oscillators and/or masses. The solution of the free vibration problem by way of Green functions and the deterministic forced vibration problem by modal analysis for both proportional and non-proportional damping is reviewed. The orthogonality relation for the natural modes of vibration is used to derive a unique relationship between the cross-spectral density functions of the applied forces and the cross-spectral density functions of the generalized forces. Finally, the response spectral density functions and the mean square responses of the beam and oscillators are derived in closed form, exact for the proportionally damped system and approximate for the non-proportionally damped system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号