首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of glottal angle on intraglottal pressure   总被引:1,自引:0,他引:1  
Intraglottal pressure distributions depend upon glottal shape, size, and diameter. This study reports the effects of varying glottal angle on intraglottal and transglottal pressures using a three-dimensional Plexiglas model with a glottis having nine symmetric glottal angles and a constant minimal glottal diameter of 0.06 cm. The empirical data were supported by computational results using FLUENT. The results suggested that (1) the greater the convergent glottal angle, the greater outward driving forces (higher intraglottal pressures) on the vocal folds; (2) flow resistance was greatest for the uniform glottis, and least for the 10 degrees divergent glottis; (3) the greatest negative pressure in the glottis and therefore the greatest pressure recovery for diverging glottal shapes occurred for an angle of 10 degrees; (4) the smaller the convergent angle, the greater the flow resistance; (5) FLUENT was highly accurate in predicting the empirical pressures of this model; (6) flow separation locations (given by FLUENT) for the divergent glottis moved upstream for larger flows and larger glottal angles. The results suggest that phonatory efficiency related to aerodynamics may be enhanced with vocal fold oscillations that include large convergent angles during glottal opening and small (5 degrees - 10 degrees) divergent angles during glottal closing.  相似文献   

2.
A single female professional vocal artist and pedagogue sang examples of “twang” and neutral voice quality, which a panel of experts classified, in almost complete agreement with the singer's intentions. Subglottal pressure was measured as the oral pressure during the occlusion during the syllable /pae/. This pressure tended to be higher in “twang,” whereas the sound pressure level (SPL) was invariably higher. Voice source properties and formant frequencies were analyzed by inverse filtering. In “twang,” as compared with neutral, the closed quotient was greater, the pulse amplitude and the fundamental were weaker, and the normalized amplitude tended to be lower, whereas formants 1 and 2 were higher and 3 and 5 were lower. The formant differences, which appeared to be the main cause of the SPL differences, were more important than the source differences for the perception of “twanginess.” As resonatory effects occur independently of the voice source, the formant frequencies in “twang” may reflect a vocal strategy that is advantageous from the point of view of vocal hygiene.  相似文献   

3.
During vocal fold vibration, there may be a mucosal wave in the superior-inferior (vertical) direction, resulting in a convergent shape during opening and a divergent shape during closing. Most of our understanding of the converging/diverging shape of the glottis has come from studies in a hemilarynx model. Previous work has shown that vibratory patterns in the full excised larynx are different than the hemilarynx. This study characterized the dynamics of the medial glottal wall geometry during vibrations in the full excised canine larynx model. Using particle image velocimetry, the intraglottal geometry was measured at the midmembranous coronal plane in an excised canine larynx model. Measurements of the glottal area were taken simultaneously using high-speed imaging. The results show that skewing of the glottal area waveform occurs without the presence of a vocal tract and that the phase-lag of the superior edge relative to the inferior edge is smaller than reported and depends on the subglottal pressure. In addition, it shows that the glottal divergence angle during closing is proportional to the magnitude of the acoustic intensity and the intraglottal negative pressure. This preliminary data suggests that more studies are needed to determine the important mechanisms determining the relationship between intraglottal flow, intraglottal geometry, and acoustics.  相似文献   

4.
This study concerns the premier singing voice and its relationship to physiological aptitude. Research literature is reviewed that indicates that during singing the trained singer uses different physiological strategies in comparison with the untrained singer, and that the noted physiological differences (respiratory, laryngeal, articulatory) occur during singing only and not during speech. Further, a study was conducted that compared the ability of trained singers versus untrained individuals to (a) discriminate differences in self-generated air pressures and (b) produce and maintain a constant level of air pressure. No significant differences were found between the trained and untrained groups in their ability to discriminate and/or control breath pressure. Combined results of previous studies and present findings lead to the tentative conclusion that the excelled singer is not physiologically endowed and/or “gifted,” but rather has benefited from technical voice training  相似文献   

5.
Modeling laryngeal aerodynamics requires specification of the glottal geometry. Changing the glottal exit radius alters the intraglottal pressure distributions in the converging glottis [Scherer et al., J. Acoust. Soc. Am. 110, 2267-2269 (2001)]. This study examined the effects of the glottal entrance radius on the intraglottal pressure distributions for divergent angles of 5°, 10°, 20°, 30°, and 40°. Glottal airflow and minimal glottal diameter were held constant at 73.2 cm(3)/s and 0.02 cm, respectively. The computational code FLUENT was used to obtain the pressure distributions. Results suggest that a smaller glottal entrance radius tends to (1) lower the transglottal pressure (reduce glottal flow resistance), although this is angle dependent, (2) make the pressure dip near the glottal entrance more negative in value, (3) increase the slope of the pressure distribution just upstream of the glottal entrance, and (4) make the initial pressure recovery (rise) in the glottis steeper. A general empirical equation for transglottal pressure as a function of radius, angle, and separation point location is offered. These results suggest that glottal entrance curvature for the divergent glottis significantly affects the driving pressures on the vocal folds, and needs to be well specified when building computational and physical models.  相似文献   

6.
This paper deals with the spectral dependence and time variability of Ångström wavelength exponent scaling law (α), which is the spectral varying slope of the logarithmic relationship between aerosol optical depths (τ) and the wavelength (λ). It is commonly used to retrieve intensive air masses optical properties such as aerosol size distribution from extensive quantities (τ) and Ångström turbidity coefficient (β). This spectral variation of α is studied at different wavelengths from measurements taken by ground-based sun photometer covering from near-infrared to ultraviolet range. We analyze the spectral measurement of aerosols optical depths at eight specific selected wavelengths from 340 to 1020 nm using the sun photometer measurements from AErosol RObotic NETwork (AERONET) from NASA. Data from the entire year 2000 were used from instruments deployed at two different sites covering the regions of Argentina as northcentral at Cordoba CETT (31.5S, 64.4W) and “pampa húmeda” at Buenos Aires CEILAP (34.5S, 58.5W). A new approach of Ångström wavelength exponent spectral variation was developed to take into account with a more accurate precision the significant curvature appearing in the logarithmic relation between τ and λ. Using the direct spectral solar radiation set, time series of Ångström coefficient of turbidity and wavelength scaling law was computed with a day to day data base clustering with uncertainty lower than 0.01 in the optical depth reconstruction over the bulk sun photometer measurements. Temporal series of constant and spectral dependence of wavelength exponent scaling law and turbidity coefficient was derived and shown to vary in space and time. Different meteorological forcing for both sites was evidenced using a regression coefficient analysis to well assess the spectral dependence of wavelength exponent coefficient due to the different cumulating mode of particles and air masses origin at different sites. This spectral decomposition is a key issue in aerosols analysis of steady state and regional scale intrusion episodes with strong connection to their potential contribution of pollution episodes in air-quality problems on urban environment.  相似文献   

7.
The reflection of a CJ detonation from a perforated plate is used to generate high speed deflagrations downstream in order to investigate the critical conditions that lead to the onset of detonation. Different perforated plates were used to control the turbulence in the downstream deflagration waves. Streak Schlieren photography, ionization probes and pressure transducers are used to monitor the flow field and the transition to detonation. Stoichiometric mixtures of acetylene–oxygen and propane–oxygen were tested at low initial pressures. In some cases, acetylene–oxygen was diluted with 80% argon in order to render the mixture more “stable” (i.e., more regular detonation cell structure). The results show that prior to successful detonation initiation, a deflagration is formed that propagates at about half the CJ detonation velocity of the mixture. This “critical” deflagration (which propagates at a relatively constant velocity for a certain duration prior to the onset of detonation) is comprised of a leading shock wave followed by an extended turbulent reaction zone. The critical deflagration speed is not dependent on the turbulence characteristics of the perforated plate but rather on the energetics of the mixture like a CJ detonation (i.e., the deflagration front is driven by the expansion of the combustion products). Hence, the critical deflagration is identified as a CJ deflagration. The high intensity turbulence that is required to sustain its propagation is maintained via chemical instabilities in the reaction zone due to the coupling of pressure fluctuations with the energy release. Therefore, in “unstable” mixtures, critical deflagrations can be supported for long durations, whereas in “stable” mixtures, deflagrations decay as the initial plate generated turbulence decays. The eventual onset of detonation is postulated to be a result of the amplification of pressure waves (i.e., turbulence) that leads to the formation of local explosion centers via the SWACER mechanism during the pre-detonation period.  相似文献   

8.
The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.  相似文献   

9.
Human phonation does not always involve symmetric motions of the two vocal folds. Asymmetric motions can create slanted or oblique glottal angles. This study reports intraglottal pressure profiles for a Plexiglas model of the larynx with a glottis having a 10-degree divergence angle and either a symmetric orientation or an oblique angle of 15 degrees. For the oblique glottis, one side was divergent and the other convergent. The vocal fold surfaces had 14 pressure taps. The minimal glottal diameter was held constant at 0.04 cm. Results indicated that for either the symmetric or oblique case, the pressure profiles were different on the two sides of the glottis except for the symmetric geometry for a transglottal pressure of 3 cm H2O. For the symmetric case, flow separation created lower pressures on the side where the flow stayed attached to the wall, and the largest pressure differences between the two sides of the channel were 5%-6% of the transglottal pressure. For the oblique case, pressures were lower on the divergent glottal side near the glottal entry and exit, and the cross-channel pressures at the glottis entrance differed by 27% of the transglottal pressure. The empirical pressure distributions were supported by computational results. The observed aerodynamic asymmetries could be a factor contributing to normal jitter values and differences in vocal fold phasing.  相似文献   

10.
Three-dimensional (3D) position and velocity information can be extracted by directly analysing the scattering patterns in velocimetry imaging of seeding particles using real-time CCD cameras. A Fraunhöfer diffraction simplification of generalised Lorenz–Mie theory is shown to yield a representative model of particle position, such that particle position can be approximately deduced from typical experimental particle images. Data are obtained by pattern-matching theoretical to experimental images using a Nelder–Mead algorithm, subject to digitisation considerations and the concept of “locales”. In this way, information about the characteristics of positional error as a function of magnification, pixel size, intensity resolution, and spatial resolution can be derived. This work shows that an optimum magnification exists, beneath which error begins to increase drastically. A practical application is demonstrated. The theory, simulations and experimental verification of this basic problem are discussed.  相似文献   

11.
Objective: A poor social network and the decline of physical function are known to be critical risk factors for functional decline in older adults. The aim of this study was to investigate the relationships between social network and physical function in Japanese community-dwelling older adults. Methods: Participants were 339 adults aged 65 years or older (mean age : 73.0 years, women :70.2%), living independently in their communities. A self-reported questionnaire was used to assess social network on two different scales―the 6-item Lubben Social Network Scale (6LSNS) and frequency of contact with other people. Handgrip strength, knee extension strength, gait speed, Timed Up and Go Test (TUG) results, and 5-repetition chair stand test (CST) scores were used to determine physical function. A multiple regression analysis that adjusted for confounding factors was used to analyze the relationship between the social network scales and each physical function test. Results: According to the results of a multiple regression analysis, a high 6LSNS score was significantly associated with greater handgrip strength (B = 0.63, p = 0.03), faster CST (B = −0.23, p = 0.01), and faster TUG (B = −0.12, p = 0.03), and high frequency of contact was significantly associated with greater handgrip strength (B = 1.08, p = 0.01). Conclusions: Social network was associated with muscle strength and physical performance. Consequently, older adults with poor social networks require an assessment of physical function, since their physical functions have possibly deteriorated.  相似文献   

12.
Non-invasive glucose sensing utilizing near-infrared spectroscopy (NIRS) has been a focusing topic in biomedical optics applications. However, different probing locations and contact pressures between the probe and skin cause variations in the light propagation paths within tissue, making it very hard to obtain stable near-infrared spectra concerning body content. This paper proposes one possible solution to the reproduction of light propagation within tissue for near-infrared non-invasive glucose sensing systems by introducing the optical measurement conditions reproduction technique. Results of experiments on glucose concentrations within human body through application of our proposed system show a RMSEP value of 15–20 mg/dL and a correlation coefficient greater than 0.8.  相似文献   

13.
Geometry of the human vocal folds strongly influences their oscillatory motion. While the effect of intraglottal geometry on phonation has been widely investigated, the study of the geometry of the inferior surface of the vocal folds has been limited. In this study the way in which the inferior vocal fold surface angle affects vocal fold vibration was explored using a two-dimensional, self-oscillating finite element vocal fold model. The geometry was parameterized to create models with five different inferior surface angles. Four of the five models exhibited self-sustained oscillations. Comparisons of model motion showed increased vertical displacement and decreased glottal width amplitude with decreasing inferior surface angle. In addition, glottal width and air flow rate waveforms changed as the inferior surface angle was varied. Structural, rather than aerodynamic, effects are shown to be the cause of the changes in model response as the inferior surface angle was varied. Supporting data including glottal pressure distribution, average intraglottal pressure, energy transfer, and flow separation point locations are discussed, and suggestions for future research are given.  相似文献   

14.
《Journal of voice》2020,34(4):645.e19-645.e39
Intraglottal pressure is the driving force of vocal fold vibration. Its time course during the open phase of the vibratory cycle is essential in the mechanics of phonation, but measuring it directly is difficult and may hinder spontaneous voicing. However, it can be computed from the in vivo measured transglottal flow and glottal area (hence the air particle velocity) on the basis of the Bernoulli energy law and the interaction with the inertance of the vocal tract. As to sustained modal phonation, calculations are presented for the two possible shapes of glottal duct: convergent and divergent, including absolute calibration in order to obtain quantitative physical values. Whatever the glottal duct configuration, the calculations based on measured values of glottal area and air flow show that the integrated intraglottal pressure during the opening phase systematically exceeds that during the closing phase, which is the basic condition for sustaining vocal fold oscillation. The key point is that the airflow curve is skewed to the right relative to the glottal area curve. The skewing results from air compressibility and vocal tract inertance. The intraglottal pressure becomes negative during the closing phase. As to the soft (or physiological) voice onset, a similar approach shows that the integrated pressure differences (opening phase − closing phase) actually increase as the onset progresses, and this applies to the results based on Bernoulli's energy law as well as to those based on the interaction with the inertance of the vocal tract. Furthermore and similarly, the phase lead of the pressure wave with respect to the glottal opening progressively increases. The underlying explanation lies in the progressively increasing skewing of the airflow curve to the right with respect to the glottal area curve.  相似文献   

15.
Although there has been continuing interest in voice quality, much of this research has focused on the vocal folds rather than the supraglottal structures. This paper reports the use of videoendoscopy for studying supraglottal participation in various singing tasks. In a preliminary study presented last year by the present authors, CT scanning was used to corroborate videoendoscopic observation. Vocal tract activities observed included variation of laryngeal height with pitch, variation of pharyngeal wall dimension with pitch and vowel, and marked supraglottic constriction with certain vocal imitations. In order to gain a better understanding of vocal training, and its effect upon vocal tract physiology, a study was designed using videoendoscopy to observe singers with significant experience and training while performing various vocal tasks. The tasks focused on the following: (1) vocal tract activity associated with pitch changes; (2) the physiology involved in the production of “cover”; (3) the structures involved in the production of vibrato; and (4) the physiology of the singer's “ring.” It would appear that videoendoscopy will become increasingly more valuable to the voice community as our understanding of vocal tract physiology improves.  相似文献   

16.
The generalization of Goldstone's theorem to dynamics with long range interactions is applied to the Coulomb Fermi gas in uniform charge background. It is shown that the plasmon energy spectrum for can be exactly derived from the spontaneous breaking of the Galilei boosts, with the plasmon excitations playing the rôle of Goldstone bosons. The connection with the appearence of variables at infinity in the dynamics of local variables and with a “classical dynamics at infinity” is discussed.  相似文献   

17.
Rotationally and isotopically resolved single-photon excitation spectra of jet-cooled Cl2in the wavelength region between 133 and 138 nm were recorded using a tunable vacuum ultraviolet “laser” generated by two-photon resonantly enhanced four-wave difference mixing in Kr gas. The dominant transition (11Σ+uX1Σ+g) is well known theoretically and experimentally to involve a double-well excited state potential energy curve formed by a strong homogeneous Rydberg-state/ion-pair state avoided crossing. In this work, single isotopomer spectra were obtained by dispersing and detecting ions produced by (1 + 1′) resonance-enhanced multiphoton ionization in a time-of-flight mass spectrometer. In this way, rotational constants were deduced for the first time for many v′ levels of the least abundant molecular isotope,37Cl2, which are both localized in the Rydberg well, and delocalized in the ion-pair portion of the 1-state potential energy curve. Our experimentally derived band origins andBvvalues test the practical validity of an analytical 11Σ+upotential energy function which is a modified version of the one first proposed by J. Wörmer, T. Möller, J. Stapelfeldt, G. Zimmerer, D. Haaks, S. Kampf, J. Le Calvé, and M. C. Castex (1988. Z. Phys. D,7,383–395).  相似文献   

18.
19.
We report the measurement of the pressure dependence for the band-gap energy and conduction-band mass for an 80 Å-wide n-type strained-single-quantum well at 4.2 K for pressures between 0 and 35 kbar and fields up to 30 T. The band-gap energy , at each pressure, was determined by extrapolating the magnetoluminescence “fan-diagram” to zero magnetic field. The pressure dependence of the band-gap energy was found to be quadratic with a linear term of about 10.3 meV/kbar and a small, , quadratic contribution. Analyses of the pressure-dependent 4.2 K magnetoluminescence data yield a conduction-band mass logarithmic pressure derivative

.  相似文献   

20.
A canonical formalism of the dynamics of interacting spherically symmetric Yang-Mills and gravitational fields is presented. The work is based on Dirac's technique for constrained hamiltonian systems. The gauge freedom of the Yang-Mills field is treated in the same footing with the coordinate transformation freedom of the gravitational field. In particular, the fixation of coordinates and the fixation of the internal gauge are achieved by totally similar techniques. Two classes of spherically symmetric motions are considered: (i) the class for which the Yang-Mills potentials themselves are spherically symmetric (“manifest spherical symmetry”). In this case the results are valid for an arbitrary gauge group; and (ii) the class for which, in the SO(3) gauge group, a rotation in physical space is compensated by a rotation of equal magnitude but opposite direction in isospin space (“spherical symmetry up to a gauge transformation”). For manifest spherical symmetry the problem amounts to effectively dealing with an abelian gauge group and the most general solution of the field equations turns out to be the Reissner-Nordström metric with a Coulomb field. For spherical symmetry up to a gauge transformation the problem is more interesting. the formalism contains then, besides the gravitational variables, three pairs of functions of the radial coordinate that describe the degrees of freedom of the Yang-Mills field. Two pairs of these functions can be combined into a complex field ψ and its conjugate. The hamiltonian is then invariant under r-dependent rotations in the complex ψ-plane. The third degree of freedom plays the role of a compensating field associated with this invariance under localized U(l) rotations. The compensating field can always be brought to zero by a gauge transformation. After this is done the gauge is completely fixed but the problem remains invariant under position independent rotations in the ψ plane. Static solutions of the field equations in this gauge are of the form ψ(r) = (r) exp (iΘ) with Θ independent of position. The particular case Θ = 0 corresponds to the Wu-Yang ansatz. A nontrivial static solution can be found in closed form. The Yang-Mills field is of the generalized Wu-Yang type with an extra electric term, and the metric is the Reissner-Nordström one. It is pointed out that a Higgs field can be easily introduced in the formalism. The addition of the Higgs field does not destroy the invariance of the Hamiltonian under r-dependent rotations in the ψ-plane. The conserved quantity associated with the invariance under ψ → exp (i(const))ψ coincides with the electric charge as defined by 't Hooft in a more general context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号