首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the usefulness and feasibility of magnetic resonance imaging (MRI) with ultrasmall superparamagnetic iron oxide (USPIO) (USPIO-enhanced MRI) for imaging inflammatory tissues. First, we investigated the relationship between the apparent transverse relaxation rate (R2*) and the concentration of USPIO by phantom studies and measured the apparent transverse relaxivity (r2*) of USPIO. Second, we performed animal experiments using a total of 30 mice. The mice were divided into five groups [A (n=6), B (n=6), C (n=6), sham control (n=6), and control (n=6)]. The mice in Groups A, B, C and control were subcutaneously injected with 0.1 ml of turpentine oil on Day 0, while those in the sham control group were subcutaneously injected with 0.1 ml of saline. The mice in Groups A, B, C and sham control were intraperitoneally injected with 200 μmol Fe per kilogram body weight of USPIO (28 nm in diameter) immediately after the first MRI study on Days 3, 5, 7 and 7, respectively, and those in the control group were not injected with USPIO. The second and third MRI studies were performed at 24 and 48 h after USPIO administration, respectively. The maps of R2* were generated from the apparent transverse relaxation time (T2*)-weighted images with six different echo times. The phantom studies showed that there was a linear relationship between R2* and the concentration of USPIO (r=0.99) and the r2* value of USPIO was 105.7 mM−1 s−1. There was a significant increase of R2* in inflammatory tissues in Group C at 24 h after USPIO administration compared with the precontrast R2* value. Our results suggest that USPIO-enhanced MRI combined with R2* measurement is useful for detecting inflammatory tissues.  相似文献   

2.
This study evaluates the robustness of a magnetic resonance (MR) fat quantification method to changes in R2* caused by an intravenous infusion of superparamagnetic iron oxide (SPIO) contrast agent. The R2* and proton density fat fraction (PDFF) were measured in liver and spine in 14 subjects using an investigational sequence (IDEAL IQ) provided by the MR scanner vendor. Measurements were made before and after SPIO infusion. Results showed SPIO significantly increased R2* in both liver (p = 8.8 × 10− 8) and spine (p =1.3 × 10− 2) but PDFFs were not significantly different in either the liver (p = 5.5 × 10− 1) or the spine (p = 5.6 × 10− 1). These results confirm that the IDEAL IQ method of fat quantification is robust to changes in R2*.  相似文献   

3.
EPR study of the Cr3+ ion doped l-histidine hydrochloride monohydrate single crystal is done at room temperature. Two magnetically inequivalent interstitial sites are observed. The hyperfine structure for Cr53 isotope is also obtained. The zero field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations and the parameters are: D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.9108±0.0002, gy=1.9791±0.0002, gz=2.0389±0.0002, Ax=(252±2)×10−4 cm−1, Ay=(254±2)×10−4 cm−1, Az=(304±2)×10−4 cm−1 for site I and D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.8543±0.0002, gy=1.9897±0.0002, gz=2.0793±0.0002, Ax=(251±2)×10−4 cm−1, Ay=(257±2)×10−4 cm−1, Az=(309±2)×10−4 cm−1 for site II, respectively. The optical absorption studies of single crystals are also carried out at room temperature in the wavelength range 195-925 nm. Using EPR and optical data, different bonding parameters are calculated and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are: B=636, C=3123, Dq=2039 cm−1, h=1.46 and k=0.21, respectively.  相似文献   

4.
A new method, using spark chambers, for the study of the reactions π± + p → ?± + p is described. The charged pion and both γ rays from the π± decay are detected. Differential and integrated cross sections σπ+=50 ± 9 μb, σπ=47 ± 9 μb) for 0.0 ?|t|?1. (GeV/c)2 and a laboratory momentum (pLab) of 15 GeV/c are presented. The momentum dependence of σγ± is well fitted from 2.7 to 16 GeV/c by σ = KpLab with nγ+ = 1.80 ± 0.80 and nγ = 1.87 ± 0.15.  相似文献   

5.
Critical behavior in the La0.6Sr0.4Mn0.8Fe0.1Cr0.1O3 ceramics was studied using magnetization methods. Results show that the paramagnetic–ferromagnetic transition is of second order. Based on the critical behavior analysis using the Banerjee criterion and the Kouvel–Fisher method, we find the critical exponents: β=0.395±0.010, γ=1.402±0.010, and δ=5.208±0.007, for which the magnetic interaction is satisfied within the three-dimensional Heisenberg model. Results indicate the presence of short-range interactions. The magnetic entropy change (−ΔSM) reached maximum values of 1.75, 1.45, 1.15, 0.8 and 0.43 J Kg−1 K−1 under a magnetic field variation of 5, 4, 3, 2 and 1 T, respectively. Nevertheless, these (−ΔSM) values are much low for any potential application at this moment. The nature of this phenomenon is discussed in relation to the characteristics of the magnetic phase transition and critical exponents.  相似文献   

6.
We report the iron isotope effect on a transition temperature (Tc) in an optimally-doped (Ba,K)Fe2As2 (Tc = 38 K) and SmFeAsO1−y (Tc = 54 K) superconductors. In order to obtain the reliable isotope shift in Tc, twin samples with different iron isotope mass are synthesized in the same conditions (simultaneously) under high-pressure. We have found that (Ba,K)Fe2As2 shows an inverse iron isotope effect αFe = −0.18 ± 0.03 while SmFeAsO1−y shows a small iron isotope effect αFe = −0.02 ± 0.01, where the isotope exponent α is defined by Tc  Mα (M is the isotopic mass). The results show that αFe changes in the iron-based superconductors depending on the system. The distinct iron isotope effects imply the exotic coupling mechanism in the iron-based superconductors.  相似文献   

7.
The Electron spin resonance (ESR) study of Cu2+-doped Bis(l-asparaginato)zinc(II) has been done at room temperature. Two magnetically equivalent sites for Cu2+ have been observed. The spin-Hamiltonian parameters evaluated with the fitting of spectra to rhombic symmetry crystalline field are gx=2.0341±0.0002, gy=2.0649±0.0002, gz=2.2390±0.0002, Ax=(51±2)×10−4 cm−1, Ay=(75±2)×10−4 cm−1and Az=(169±2)×10−4 cm−1. The ground state wave function of Cu2+ has also been determined. The g-anisotropy has been estimated and compared with the experimental value. Further with the help of optical study, the nature of bonding of metal ion with different ligands in the complex has been discussed.  相似文献   

8.
Electron spin resonance (ESR) of Cu2+ doped cadmium formate dihydrate single crystal was studied at room temperature. Copper enters the lattice substitutionally and is trapped at two magnetically inequivalent sites. The observed spectra are fitted to a spin-Hamiltonian of rhombic symmetry with the following values of the spin-Hamiltonian parameters, Cu2+(I): gx=2.097±0.002, gy=2.1166±0.002, gz=2.2887±0.002 and Ax=(140±2)×10−4 cm−1, Ay=(151±2)×10−4 cm−1, Az=(239±2)×10−4 cm−1, Cu2+(II): gx=2.0843±0.002, gy=2.1045±0.002, gz=2.2742±0.002 and Ax=(141±2)×10−4 cm−1, Ay=(158±2)×10−4 cm−1, Az=(267±2)×10−4 cm−1. The ground state wave function of the Cu2+ ion in this lattice is evaluated. It is found that the ground state is predominantly |x2y2〉. The g-factor anisotropy is also calculated and compared with the experimental value. With the help of the optical absorption study, the nature of bonding in the complex has been discussed.  相似文献   

9.
Electron paramagnetic resonance (EPR) study of VO2+ doped zinc potassium phosphate hexahydrate single crystal is carried out. The angular variation of the spectra is studied in the three crystallographic planes. The principal value of spin Hamiltonian parameters g and A and the direction cosines which principal axes make with the crystallographic axes are determined. The observed values are site I: g=1.9664±0.0002, g=1.9973±0.0002, A=150±2×10−4, A=60±2×10−4 cm−1; site II: g=1.9276±0.0002, g=1.9921±0.0002, A=155±2×10−4 and A=62±2×10−4 cm−1. By comparison of direction cosines of g from EPR with the direction cosines of different bonds obtained from crystal structure data it is ascertained that the VO2+ ion occupies Zn2+ substitutional sites. The optical absorption study of the crystal at room temperature is also carried out. The bands observed in the optical absorption spectrum are attributed to d-d transitions. The EPR results together with the optical data are employed to estimate the molecular orbital (MO) coefficients. These MO coefficients (also called bonding coefficients) are further used to discuss the nature of bonding of VO2+ ion with different ligands in the crystal.  相似文献   

10.
The electron paramagnetic resonance (EPR) study of the Cr3+-doped ammonium oxalate monohydrate (AOM) single crystal is done at room temperature. Two magnetically inequivalent sites for chromium are observed. The hyperfine structure for Cr53 isotope is also obtained. The spin Hamiltonian parameters are evaluated as: D=(309±2)×10−4 cm−1, E=(103±2)×10−4 cm−1, g=1.9820±0.0002, A=(161±2)×10−4 cm−1 for site I and D=(309±2)×10−4 cm−1, E=(103±2)×10−4 cm−1, g=1.9791±0.0002, A=(160±2)×10−4 cm−1 for site II, respectively. On the basis of EPR data the site symmetry of Cr3+ doped single crystal is discussed. The optical absorption spectra are recorded in 195-925 nm wavelength range at room temperature. The energy values of different orbital levels are determined. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The values of different parameters are B=803, C=3531, Dq=2208 cm−1, h=0.59 and k=0.21, where B and C are Racah parameters, Dq is crystal field parameter and h and k are nephelauxetic parameters, respectively.  相似文献   

11.
Heat capacities of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its radical-ion salt NH4-TCNQ have been measured at temperatures in the 12-350 K range by adiabatic calorimetry. A λ-type heat capacity anomaly arising from a spin-Peierls (SP) transition was found at 301.3 K in NH4-TCNQ. The enthalpy and entropy of transition are ΔtrsH=(667±7) J mol−1 and ΔtrsS=(2.19±0.02) J K−1 mol−1, respectively. The SP transition is characterized by a cooperative coupling between the spin and the phonon systems. By assuming a uniform one-dimensional antiferromagnetic (AF) Heisenberg chains consisting of quantum spin (S=1/2) in the high-temperature phase and an alternating AF nonuniform chains in the low-temperature phase, we estimated the magnetic contribution to the entropy as ΔtrsSmag=0.61 J K−1 mol−1 and the lattice contribution as ΔtrsSlat=1.58 J K−1 mol−1. Although the total magnetic entropy expected for the present compound is R ln 2 (=5.76 J K−1 mol−1), a majority of the magnetic entropy (∼4.6 J K−1 mol−1) persists in the high-temperature phase as a short-range-order effect. The present thermodynamic investigation quantitatively revealed the roles played by the spin and the phonon at the SP transition. Standard thermodynamic functions of both compounds have also been determined.  相似文献   

12.
EPR spectra of Cr3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are recorded at 77 K. The spin Hamiltonian and zero field parameters g, |D| and |E| are measured from the resonance lines obtained at various rotations of the magnetic field. The values obtained are: gx=1.9257±0.0002, gy=1.9720±0.0002, gz=2.0102±0.0002, |D|=313±2 (×10−4) cm−1 and |E|=101±2 (×10−4) cm−1. From the results of EPR study, the site symmetry of Cr3+ ion in the crystal is discussed. The optical absorption at room temperature is also studied. From the observed band positions, the crystal field splitting parameter (Dq) and the Racah inter-electronic repulsion parameters (B and C) are evaluated. The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed.  相似文献   

13.
14.
Studies on fine and hyperfine structures of paramagnetic resonance spectra in single crystals of Mn2+: ammonium oxalate monohydrate are reported. As sufficient numbers of lines were not obtained at room temperature, measurements have been done at liquid nitrogen temperature and at the frequency of X-band. The Mn2+ spin Hamiltonian parameters have been evaluated employing a large number of resonant line positions observed for various orientations of the external magnetic field and the surrounding crystalline field has been discussed. The values of the zero field parameters that give good fit to the observed EPR spectra have been evaluated. The values obtained for g, A, B, D, E and a are 2.0002±0.0002, (100±2)×10−4, (79.5±2)×10−4, (257±2)×10−4, (85±2)×10−4 and (−18±1)×10−4 cm−1, respectively. The percentage of covalency of the metal-ligand bond is also determined. The optical absorption study has been done at room temperature. The observed bands are assigned as transitions from the 6A1g(S) ground state to various excited quartet levels of Mn2+ ion in a cubic crystalline field. The electron repulsion parameters (B and C), the crystal field splitting parameter(Dq) and the Trees correction (α) providing good fit to the observed optical spectra have been estimated and the values obtained for the parameters are B=897, C=2144, Dq=910 and α=76 cm−1.  相似文献   

15.
Magnetoresistance and Hall coefficient of air-stable potassium-intercalated graphite sheets (hereafter abbreviated as K-PGS) were determined at room temperature. The magnitude of the magnetoresistance and the absolute value of Hall coefficient of K-PGS decreased with increasing potassium content of K-PGS, nK/nC. Two-carrier model was used for calculating carrier density and mobility. The electron density increased with increasing nK/nC: 3.07×1020 cm−3 (nK/nC=0.005), 5.67×1020 cm−3 (nK/nC=0.008) and 6.40×1020 cm−3 (nK/nC=0.011). The value of the electron density of K-PGS with nK/nC=0.011 (nominal composition KC91) was about 80% of the reported value, 7.8×1020 cm−3, for KC48 (nK/nC=0.021) prepared from HOPG (highly oriented pyrolytic graphite). The mobility decreased with increasing nK/nC: 2.11×103 cm2 V−1 s−1 (nK/nC=0.005), 1.42×103 cm2 V−1 s−1 (nK/nC=0.008) and 1.34×103 cm2 V−1 s−1 (nK/nC=0.011). The value of the mobility of K-PGS with nK/nC=0.011 was about 60% of the reported value (2300 cm2 V−1 s−1) for KC48 prepared from HOPG.  相似文献   

16.
In this work, we have studied the sorption of selenium (79Se is one of the main radionuclides in a spent nuclear fuel repository) on magnetite (Fe3O4), a mineral present in the near-field of a nuclear waste repository that might represent an important retardation factor for the mobility of many radionuclides.The sorption of both Se(IV) and Se(VI) onto magnetite has been fitted by a non-competitive Langmuir isotherm with Γmax = (3.13 ± 0.07) × 10−6 mol m−2 and KL = (1.19 ± 0.07) × 106 dm3 mol−1 for Se(IV) and Γmax = (3.5 ± 0.2) × 10−6 mol m−2 and KL = (3.0 ± 0.1) × 105 dm3 mol−1 for Se(VI).The variation of the sorption of selenium with pH has been modeled using the Triple Layer Surface Complexation Model and the equilibrium constants between selenium and magnetite have been obtained using the FITEQL program. For the case of Se(IV), the best fitting has been obtained using two inner-sphere complexes, FeOHSeO32− and FeHSeO3, while for Se(VI), the best fitting has been obtained considering only an outer-sphere complex, FeOH2+SeO42−.The surface complexation reactions derived in this work are in agreement with those stated by other authors for sorption of Se(IV) and Se(VI) on hydrous iron oxides.  相似文献   

17.
The ν1 (A1, 1583.22 cm−1) and ν4 (E, 1615.33 cm−1) Si-D stretching bands of monoisotopic D3Si35Cl have been studied by FTIR spectroscopy with a resolution of 3.3×10−3 cm−1. We have assigned 2341 rovibrational lines for ν1 (Jmax=70, Kmax=19) and 6207 for ν4 (Jmax=75, Kmax=27). Both (ΔK=±1, Δ?=±1) and (ΔK=±2, Δ?=?1) interactions connect the v1=1 and v4=1 levels, the latter exerting moreover a weak ?(2, 2) interaction. These interactions were taken into account in a nonlinear least-squares fit, refining 29 free parameters with a standard deviation of 0.257×10−3 cm−1 over 6722 nonzero-weighted data. Blended lines and about 250 of the 330 lines belonging to the K=11 subband of ν1 and the KΔK=−6 subband of ν4 were zero-weighted because they are locally perturbed respectively by the neighboring upper states of the 2ν36 (E, 1561.95 cm−1) and 3ν3 (A1, 1604.81 cm−1) bands. Equivalent fits were obtained for altogether three different models obeying constraints according to the theory of unitary equivalent reductions of the rovibrational Hamiltonian. By means of a band contour simulation both the transition moment ratio |M1:M4|=0.67 and a positive sign of the Coriolis intensity perturbation were determined.  相似文献   

18.
From known conversion coefficients and angular correlations combined with the γ-ray decay deduced from the 181Ta(p, 2n180W reaction it is found that the 1007 → 104 keV (2 → 2+) transition in 180W has mixing parameters δ1 = −0.16 ± 0.07 and δ2 = −0.64 ± 0.17 for M2/E1 and E3/E1, respectively  相似文献   

19.
The (MgB2)2−xCux (x=0-0.5) superconducting system was prepared by a solid-state reaction technique. Microstructural evolution and transport properties including resistivity versus temperature up to a magnetic field of 6 T, activation energy, thermoelectric power and Fermi energy, EF, and the corresponding velocity, VF, values of the samples prepared were also investigated. The XRD analysis showed a multiphase formation and no detectable solution of Cu in MgB2. Two different impurity phases, MgCu2 and CuB24, have been identified and their peak intensity increased when the Cu concentration increased. The temperature dependence of the resistivity of the samples showed a metallic behavior down to Tc. But, for the Cu concentrations above 0.3 the superconducting phase transition completely disappeared. The magnetic field strongly affects the electrical properties. For x=0.0 samples, the transition is found to be sharp, ΔT∼1 K, but it becomes broader with increasing magnetic field and Cu concentration. The calculated values of carrier concentration, n, of the samples are showed a sharp decrease with increasing Cu content. For x=0.0 sample the n was calculated to be 12×1021 cm−3, but for the x=0.5 sample it decreased to 1.3×1021 cm−3. We found that the activation energy, U(B), decreased sharply with increasing magnetic field. According to thermoelectric power and Fermi energy, EF, calculations the decrease of the carrier concentration by the additions of Cu into MgB2 gives a decrease in EF and this could be attributed to a shift of the Fermi level towards the top of the σ-hole band.  相似文献   

20.
EPR and optical studies of single crystals of Mn2+: bis(l-Asparaginato)Zn(II) are reported. The spin-Hamiltonian parameters are determined employing the positions of a large number of resonance lines for various orientations of the external magnetic field. The best-fit zero-field parameters to the observed EPR spectra are obtained as, D=(228±2)×10−4 cm−1, E=(58±2)×10−4 cm−1 and a=(−12±1)×10−4 cm−1,whereas g=2.0002±0.0002, , and . From the optical absorption study, the lattice distortion is suggested. The electron repulsion parameters (B and C) and crystal field parameters (Dq and α) evaluated from the fitting of observed optical spectra are: B=858 cm−1, C=2620 cm−1, Dq=950 cm−1, and α=76 cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号