首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orthogonal Time Frequency Space modulation (OTFS) has evolved as an astounding modulation technique for high-speed communication in a doubly dispersive channel. In any wireless communication system, channel estimation and equalization are essential at the receiver to recover the transmitted data. To accomplish this for the emerging OTFS based systems, a modified embedded pilot-based channel estimation technique and low complexity feedback equalization algorithm for integer Doppler shifts in the delay-Doppler domain are proposed in this paper. Our channel estimation scheme exploits embedded-pilot arrangement, and the symbol equalization relies on the Interference calculation and its mitigation iteratively. To achieve this we contemplate a prudent arrangement of symbols in the OTFS frame in such a way that the Guard symbols prevent the interference between data symbols and the pilot symbol at the receiver. Two distinct lumps of received data of the same OTFS frame will be engaged in channel estimation and data detection. An analytical expression of the theoretical Cramer Rao Lower Bound (CRLB) is derived and plotted for the proposed channel estimation scheme. The attained simulation results for Bit-Error-Rate (BER) under the proposed scheme show a significant error rate improvement over the Minimum Mean Squared Error (MMSE) equalization algorithm. Further, a lower computational complexity is also achieved in comparison with modified MMSE detection and MP detection algorithms.  相似文献   

2.
A new frequency-domain channel estimation and equalization (FDE) scheme, combined with a new group-wise phase correction scheme, is proposed for single-carrier (SC) underwater acoustic communications systems employing single transducer and multiple hydrophones. The proposed SC-FDE scheme employs a 2N-point Fast Fourier Transform (FFT) to estimate and equalize the channel in frequency domain, where N is the number of symbols in a data block. Both the frequency-domain channel estimation and equalization are designed by the linear minimum mean square error criterion. Initial channel estimation is performed by a pilot signal block and later updates are achieved using the detected data blocks. The proposed phase correction scheme utilizes a few pilot symbols in each data block to estimate the initial phase shift and then correct it for the block to combat the large phase rotation due to the instantaneous Doppler drifts in the acoustic channels. Time-varying instantaneous phase drifts are re-estimated and compensated adaptively by averaging the phase variation across a group of symbols. The proposed SC-FDE and phase correction method is applied to the AUVFest’07 experimental data measured off the coast of Panama City, Florida, USA, June 2007. With the Quadrature Phase Shift Keying (QPSK) modulation and a symbol rate of 4 ksps, the proposed scheme achieves an average uncoded bit error rate on the order of 1×10?4 for fixed-to-fixed channels with the source–receiver range of 5.06 km. For the moving-to-fixed source–receiver channels where the source–receiver range is 1–3 km, the multipath delay spread is 5 ms, the average Doppler shifts are ±20 Hz, and the maximum instantaneous Doppler drifts from the mean is ±4 Hz, the proposed scheme achieves an average uncoded bit error rate on the order of 1×10?3.  相似文献   

3.
While pilot symbols facilitate channel estimation, they reduce the transmit energy for data symbols per OFDM symbol under a fixed total transmit power constraint. In this paper, we investigate the effect of the pilot-to-data power ratio (PDPR) on multilevel quadrature amplitude modulation (M-QAM) multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems with adaptive modulation in order to provide a basic framework for finding the optimal PDPR in current and emerging standards using MIMO-OFDM. In particular, we derive the optimal PDPR in terms of average symbol error rate (SER) and spectral efficiency according to different receiver types such as zero-forcing (ZF) and minimum mean square error (MMSE). Employing the optimal PDPR results in higher spectral efficiency and lower SER without using any additional resource.  相似文献   

4.
In this work, we investigate the challenging problem of channel estimation in high-mobility environments for advanced mobile communication systems (5G and beyond). First, we propose an iterative algorithm for channel estimation and symbol detection in the delay-Doppler domain for multiple-input multiple-output orthogonal time–frequency space (OTFS) system. The proposed algorithm is based on a superimposed pilot pattern to improve the spectral efficiency of the system. It iterates between data-aided channel estimation and message-passing-aided data detection. The channel estimation step is based on a threshold method. This step considers interference-plus-noise caused by the data symbols and the additive noise to adapt the threshold at each iteration. The data detection step is based on an adapted version of the message-passing algorithm proposed in the literature for uncoded OTFS. Then, to improve the channel estimation efficiency, we suggest an interference cancellation scheme executed at each iteration of the proposed algorithm. Finally, we compare the computational complexity and the achieved performance in terms of normalized mean square error of channel estimation, bit error rate, and spectral efficiency against five state-of the-art methods.  相似文献   

5.
Deep Learning (DL)–based wireless communication systems have the potential to improve the conventional functions and current architecture of communication systems. In this paper, we propose a novel DL-based channel estimation scheme for multiple-input multiple-output filter bank multicarrier with offset quadrature amplitude modulation (MIMO-FBMC/OQAM) systems called deep bidirectional gated-recurrent unit (BiGRU) scheme. This scheme can easily be applied to a single-input single-output (SISO) system. The proposed scheme is divided into two stages: offline and online. The network is first trained in the offline stage. The prediction of channel information and estimation of the channel matrix using the trained network is then performed in the online stage. The simulation results in terms of the normalized mean square error (NMSE) and bit error rate (BER) demonstrate that, under different time-varying channel models, the proposed DL scheme significantly improves the channel estimation performance of FBMC for single and multiple antennas compared to conventional interference approximation method (IAM) channel estimation methods.  相似文献   

6.
In this paper, two novel joint semi-blind channel estimation and data detection techniques are proposed and investigated for Alamouti coded single-carrier (SC) multiple-input multiple-output (MIMO) communication system using Rayleigh flat fading channel model. In the first novel semi-blind technique, blind channel estimation can be performed by using singular value decomposition (SVD) of received output autocorrelation matrix and training based channel estimation for orthogonal training symbols can be performed by using orthogonal pilot maximum likelihood (OPML) algorithm. Further using, that semi-blind channel estimate and received output, data detection is performed by using Maximum likelihood (ML) detection. Finally we derived new training symbols from error covariance matrix of estimated data and known orthogonal training symbols, which further applied to OPML algorithm for final channel estimate. In the second novel semi-blind technique, blind channel estimation can be performed by using matrix triangularization based on householder QR decomposition (H-QRD) of received output autocorrelation matrix instead of SVD decomposition. Other steps are same as the first novel technique to calculate data detection and final channel estimation. Simulation results are presented under 2-PSK, 4-PSK, 8-PSK and 16-QAM data modulation schemes using 2 transmitters and different combinations of receiver antennas to investigate the performances of novel techniques compare to conventional whitening rotation (WR) and rotation optimization maximum likelihood (ROML) based semi-blind channel estimation techniques. Result demonstrates that novel techniques outperform others by achieving near optimal performance.  相似文献   

7.
This paper presents the theoretical analysis of adaptive multiuser RAKE receiver scheme in frequency selective fading channel for direct-sequence code division multiple access (DS-CDMA) system. Least mean square (LMS) algorithm is used to estimate the channel coefficients. Chaotic sequences are used as spreading sequence and corresponding bit error rate (BER) in closed form is derived for imperfect channel estimation conditions. Performances of chaotic sequences are compared with pseudorandom noise (PN) sequences. Under perfect synchronization assumption, various simulation results are shown to investigate the performance of the proposed system.  相似文献   

8.
To fully attain array gains of massive multiple-input multiple-output (MIMO) and its energy and spectral efficiency, deriving channel state information (CSI) at the base station (BS) side is essential. However, CSI estimation of frequency-division duplex (FDD) based massive MIMO is a challenging task owning to the required pilots, which are proportional to the number of antennas at the BS side. Therefore, the pilot overhead should be inevitably mitigated in the process of downlink channel estimation of FDD technique. In this paper, we propose a novel compressed sensing (CS) algorithm which takes advantage of correlation between the received and transmitted signals to estimate the channel with high precision, and moreover, to reduce the computational complexity imposed on the BS side. The main idea behind the proposed algorithm is to sort the specific number of maximum correlations as a common support in each iteration of the algorithm. Simulation results indicate that the proposed algorithm is capable of estimating downlink channel better than the counterpart algorithms in terms of mean square error (MSE) and the computational complexity. Meanwhile, the complexity of the proposed method linearly grows up when the number of BS antennas increases.  相似文献   

9.
In this paper we propose a self-adaptation bacterial foraging optimization (SA-BFO) approach for an adaptive channel equalizer in which the weights of the equalizer are optimized to minimize the mean square error (MSE) and bit error rate (BER). The adaptive channel equalizer at the receiver removes or reduces the effects of inter symbol interference (ISI) and noise. Tests demonstrate that the proposed adaptive channel equalizer provides better convergence speed and minimal MSE and BER compared to a BFO and a normalized least mean square (NLMS) based equalizer.  相似文献   

10.
Vehicle-to-everything (V2X) communication is essential for intelligent transportation systems (ITS) and critical technology to ensure traffic safety. Aiming at the problems of noise interference, time-varying, and inter-carrier interference (ICI) in the LTE-V2X channel, a joint fast time-varying channel estimation with noise elimination and ICI cancellation is proposed in this paper. Firstly, using the autocorrelation characteristics of the Zadoff Chu (ZC) pilot sequence, a modified discrete Fourier transform (M-DFT) channel estimation algorithm is proposed to eliminate the noise in cyclic prefix (CP). Secondly, a joint iterative direct decision (IDD) and time-varying channel fitting (CF), called IDD-CF channel estimation algorithm, is proposed to track the rapid changes of channels on different symbols and eliminate ICI. The system simulation results show that the proposed joint fast time-varying channel estimation algorithm can effectively eliminate the noise and ICI, improve the performance of channel estimation, and have better robustness under different Doppler frequency shifts than the representative channel estimation algorithm.  相似文献   

11.
在深海远程正交频分复用(OFDM)水声通信中,信道时延长、频率选择性衰落严重,传统的块独立压缩感知稀疏估计需要较高导频插入密度才能保证一定的估计性能,通信频谱利用率较低。提出了一种基于信道稀疏时变建模的块间迭代信道估计方法,利用深海信道在两个相邻OFDM数据块之间的时间相关性建立块间信道稀疏多途结构的时变关系,在此基础上,对传统稀疏信道估计算法中的候选字典矩阵的字典原子进行删减并改进优化方程,实现了对前一数据块所估信道信息的有效利用,显著降低了信道估计所需的导频插入密度。在深海不同接收深度、不同距离条件下开展了海试验证,实验结果表明,与传统稀疏信道估计方法相比,本方法在导频插入密度减半的条件下可达到优于传统方法的估计性能。  相似文献   

12.
In frequency-division duplexing (FDD) cell-free massive multiple-input multiple-output (MIMO) systems, an excessive channel estimation overhead is a critical issue that limits the system performance. In this paper, by exploiting the sparse channel characteristics of such a cell-free system, we apply compressive sensing to estimate the channel state information and solve the excessive pilot overhead problem. The proposed algorithm estimates several channel coefficients with significant gains in the power domain and ignores the approximately zero coefficients. Compared to minimum mean square error (MMSE) estimation with orthogonal pilots, the proposed method significantly reduces the pilot overhead in an FDD cell-free massive MIMO system. The access points (APs) that contribute low gains feature reduced energy consumption because the power coefficients corresponding to zero gains in the sparse channel are assigned zeros in the power control process. Therefore, to improve the energy efficiency, the ignored channel coefficients reduce the power overhead.  相似文献   

13.
一种鲁棒性强的OFDM 水声通信系统*   总被引:1,自引:0,他引:1       下载免费PDF全文
为了在不同衰落水声信道下实现正交频分复用水声通信,该文提出了一种鲁棒性强的正交频分复用水声通信方案,方案包括编码调制、信道估计和多普勒估计等内容。为了使该系统更稳健,整个信道编码分为两个步骤。首先,循环冗余校验编码器和里德-所罗门编码器用于编码整个数据包,然后循环冗余校验编码器和Turbo 编码器用于编码每个数据帧,其中比特交织编码调制技术用来对抗信道的时变特性。为了得到水声信道估计,使用线性最小均方误差估计器来处理导频数据得到信道估计值。多普勒估计包括帧的多普勒估计和符号的多普勒估计。实验结果表明该系统在不同的衰落信道下都能实现正确的跟踪和译码,系统的鲁棒性能优越。此外,该系统算法计算简单,易于实现,具有良好的工程应用价值。  相似文献   

14.
针对时序多重稀疏贝叶斯学习信道估计方法计算复杂度高且在低信噪比时估计精度低的问题,本文提出了一种改进的时序多重稀疏贝叶斯学习正交频分复用冰下水声信道估计方法。首先,采用奇异值分解方法对接收导频矩阵进行去噪;随后利用去噪后的接收导频矩阵结合最小二乘信道估计方法获得时序多重稀疏贝叶斯信道估计的超参数矩阵、感知矩阵等先验知识;最后,利用冰下水声信道的稀疏特性和多途结构较为稳定的特点,采用时序多重稀疏贝叶斯信道估计对不同符号的冰下水声信道进行联合重建。仿真结果显示,在能量系数为0.03时,改进方法信道估计均方误差相比较于原始方法至少降低了约2.87×10-5,运算时间至少下降了约为90%。第11次北极科学考察冰下试验结果显示,改进方法的平均原始误码率略微低于原始方法,平均运算时间降低约75%。研究结果表明,利用冰下水声信道的特点,改进方法可以实现高精度冰下水声信道估计,并且有效降低系统计算复杂度。   相似文献   

15.
The main objective of this article was (i) to refocus the residual dipolar and quadrupolar interactions in anisotropic tissues employing magic sandwich echo (MSE) imaging and to compare the results with that of conventional spin-echo (SE) imaging, and (ii) to quantify MSE relaxation and dispersion characteristics in bovine Achilles tendon and compare with spin-lattice relaxation time constant in the rotating frame (T(1rho)). Magic sandwich echo weighted images are approximately 75-100% higher in signal-to-noise ratio than the corresponding T(2)-weighted images. Magic sandwich echo relaxation times varied from 13+/-2 to 19+/-3 ms (mean+/-S.D.), depending upon the structural location of tendon. T(2) relaxation times only varied from 4+/-1 to 10+/-3 ms (mean+/-S.D.) on the same corresponding locations. Magic sandwich echo provides approximately 100% enhancement in relaxation times compared to T(2). Preliminary results based on bovine Achilles tendon and cartilage specimens suggest that the MSE technique has potential for refocusing residual dipolar as well as quadrupolar interactions in anisotropic systems and yields higher intensities than conventional SE imaging as well as T(1rho)-encoded imaging, especially at low-burst pulse amplitudes (250 and 500 Hz).  相似文献   

16.
针对大规模多输入多输出(multiple input multiple output, MIMO)系统信道估计中的导频设计问题,在压缩感知理论框架下,提出了一种基于信道重构错误率最小化的自适应自相关矩阵缩减参数导频优化算法.首先以信道重构错误率最小化为目标,推导了正交匹配追踪(orthogonal matching pursuit, OMP)算法下信道重构错误率与导频矩阵列相关性之间的关系,并得出优化导频矩阵的两点准则,即导频矩阵列相关性期望和方差最小化;然后研究了优化导频矩阵的方法,并提出相应的自适应自相关矩阵缩减参数导频矩阵优化算法,即在每次迭代过程中,以待优化矩阵平均列相关程度是否减小作为判断条件,调整自相关矩阵缩减参数值,使参数不断趋近于理论最优.仿真结果表明,与采用Gaussian矩阵、Elad方法、低幂平均列相关方法得到的导频矩阵相比,本文所提方法具有更好的列相关性,且具有更低的信道重构错误率.  相似文献   

17.
给出了一种基于均方误差估计的非本征光纤法布里-珀罗(EFPI)传感器的腔长解调算法。在参量估计方面, 均方误差将估计子的方差和偏差结合在一起, 具有更高的估计精度和准确度。如果给出某一个真值的一系列估计子, 则具有最小均方误差的估计子比其他估计子更为有效。在非本征光纤法-珀传感器的腔长解调方面, 则实际腔长对应于腔长均方误差估计取最小值时的腔长估计子。对一个非本征光纤法-珀压力传感器的测试结果表明, 腔长解调分辨率为0.18 nm, 对应的压力分辨率可达2.99 kPa。与传统的解调算法相比, 通过该算法可在较宽的动态范围内获得高的解调分辨率, 并实现绝对腔长的解调。  相似文献   

18.
马璐  刘凇佐  乔钢 《物理学报》2015,64(15):154304-154304
针对水声正交频分多址(OFDMA)上行通信中用户导频数量少、分布不均匀, 导致传统内插信道估计方法产生误码平层的问题, 提出一种稀疏信道估计与导频优化方法. 基于压缩感知(CS)理论估计稀疏信道冲激响应, 并依据CS理论中测量矩阵互相关最小化原理, 提出基于随机搜索的导频图案和导频功率联合优化算法. 仿真结果表明, 所提方法在不同多径扩展信道下的性能均优于基于线性内插的最小二乘估计、未经导频优化的CS信道估计以及单纯基于导频图案优化的CS信道估计. 水池实验分别验证了交织式和广义式子载波分配的水声OFDMA上行通信性能, 在接收信噪比高于10 dB时利用所提方法实现了两用户接入的可靠通信.  相似文献   

19.
汪辉松  曾贵华 《中国物理 B》2008,17(12):4451-4457
In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical approach. Replica analyses focus on analytically studying how the minimum mean square error (MMSE) channel estimation error appears in a multiuser channel capacity formula. And the relevant mathematical expressions are derived. At the same time, numerical simulation results are demonstrated to validate the Replica analyses. The simulation results show how the system parameters, such as channel estimation error, system load and signal-to-noise ratio, affect the channel capacity.  相似文献   

20.
The main requirements for 5G and beyond connectivity include a uniform high quality of service, which can be attained in crowded scenarios by extra-large MIMO (XL-MIMO) systems. Another requirement is to support an increasing number of connected users in (over)crowded machine-type communication (mMTC). In such scenarios, pilot assignment (PA) becomes paramount to reduce pilot contamination and consequently improve spectral efficiency (SE). We propose a novel quasi-optimal low-complexity iterative pilot assignment strategy for XL-MIMO systems, based on a genetic algorithm (GA). The proposed GA-based PA procedure turns the quality of service more uniform, taking into account the normalized mean-square error (NMSE) of channel estimation from each candidate of the population. The simulations reveal that the proposed iterative procedure minimizes the channel estimation NMSE averaged over the UEs. The second procedure is the subarray (SA) selection. In XL-MIMO systems, commonly a UE is close to an SA antenna subset such that a sufficient data rate can be achieved if only a specific SA serves that UE. Thus, an SA selection procedure is investigated to make the system scalable by defining the maximum number of UEs each SA can help. Hence, the SA clusters are formatted based on the PA decision. Furthermore, we introduce an appropriate channel model for XL-MIMO, which considers a deterministic LoS component with a distance-dependent probability of existence combined with a stochastic spatially correlated Rayleigh NLoS fading component. The developed simulations and analyses rely on this suitable channel model under realistic assumptions of pilot contamination and correlated channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号