首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
张兆国 《工科物理》1999,9(3):33-34
扼要介绍了激光的发明,特点和激光器的发展,及激光的一些重点应用。  相似文献   

2.
固体激光器是一种具有重要应用背景的高功率激光器,对包括激光波长、光束发射口径、发射功率、光束质量等在内的激光器参数的选择进行了分析,研究了大气介质的光学性质、激光大气传输效应以及激光辐射与靶目标的耦合机制与耦合效率等因素的影响.相关结果表明100 kW的固体激光器的综合效能可与2~3倍平均输出功率的DF化学激光器相当,这说明高平均功率固体激光器是一种具有潜在优势和良好发展前景的高功率激光器.  相似文献   

3.
激光防护技术的发展现状   总被引:8,自引:1,他引:7  
付伟 《应用光学》2000,21(3):12-16
为了对抗日趋严重的激光致盲威胁 ,世界各国加速发展激光防护技术 ,并已取得了相当大的进展。本文综述激光防护技术的发展现状  相似文献   

4.
"解剖"激光告警   总被引:4,自引:0,他引:4  
朱家健 《物理》2009,38(11)
介绍了激光告警的作用,分析了激光告警器的原理、性能要求和分类,然后分别阐述了典型的光谱识别型、相干识别型和散射探测型激光告警器,并对不同类型的激光告警器进行了比较评价.  相似文献   

5.
用于激光推进的高功率激光器的选择   总被引:9,自引:3,他引:6       下载免费PDF全文
 从激光推进的要求出发,阐述了用于激光推进的高功率激光器的选择原则,即激光器必须满足:(1)高的平均功率和峰值功率;(2)高的单脉冲能量;(3)高的重复频率;(4)优良的大气传输特性。主要分析了目前YAG固体激光器、自由电子激光器和TEA脉冲CO2激光器的特点,通过上述4个方面性能的比较,认为在目前水平下,TEA脉冲CO2激光器是进行激光推进的首选强激光源,其优点表现在:功率可达10kW量级,单脉冲能量可达0.5~1kJ,重复频率为20~40Hz;激光波长处于大气传输窗口,对大气变化不敏感;工作物质快速流动,不存在热透镜效应和破坏阈值;相关光学元件易于制造;光束质量较好;运行成本低。  相似文献   

6.
战场激光防护技术   总被引:4,自引:1,他引:3  
分析了战场激光威胁。从激光防护的原理和技术途径出发,论述了激光防护的方法。介绍了几种典型的激光防护装置,并对激光防护技术的发展提出了几点看法。  相似文献   

7.
朱延彬 《光子学报》1995,24(5):453-458
激光科学与生命科学相互渗透,正在形成一门新兴边缘学科──“激光生命科学”.本文就激光生命科学下述几个重要领域的研究进展进行概述:1)激光生物学与激光诱变育种;2)激光遗传工程及激光微束在遗传操作中的应用;3)激光在分子生物学中的应用;4)用于生命科学研究的激光光谱技术;5)激光医学;6)激光生物物理技术。  相似文献   

8.
中红外激光在通信、遥感、安检和光电对抗等许多领域中都有重要的应用价值,一直以来都是激光领域研究的热点。中红外激光的产生方法有很多,其中光纤中红外激光器具有结构紧凑、光束质量好和转换效率高等特点,故被认为最有希望实现便携、稳定、高效和高功率的中红外激光输出。随着软玻璃光纤制备工艺水平的提升,中红外光纤激光技术获得了快速发展,输出功率水平也得到了很大提升。然而,受限于稀土离子种类、软玻璃光纤制备工艺和软玻璃光纤化学稳定性,基于软玻璃光纤的中红外激光器在功率进一步提升和波长拓展方面存在技术瓶颈,近年出现的中红外光纤气体激光器为此提供了有效的解决方案。详细综述了中红外光纤激光技术的研究现状,包括基于气体填充空芯光纤的新型中红外光纤激光器,并简要展望了中红外光纤激光技术的发展趋势。  相似文献   

9.
许晓军 《强激光与粒子束》2020,32(1):011007-1-011007-5
激光的本质是微观粒子的有序运动,而热是微观粒子的无序运动,高能激光产生过程中这一对矛盾贯穿始终,可以说高能激光的发展史,就是一部与废热的斗争史。回顾高能激光发展的六十年,剖析高能激光的科学内涵,我们大致将其划分为前后三十年的两个阶段,前一阶段着重解决能用的问题,后一阶段重在解决好用的问题。围绕产热、散热,我们剖析了激光功率、光束质量、效率三者之间的内在关联,简要回顾了各类高能激光器的发展历程,评价了各类高能激光的特色,展望了高能激光未来的发展路径。  相似文献   

10.
 本世纪科学技术的发明之一--激光,自1960年作为一种新光源初露锋芒之后,发展神速,深刻地影响着自然科学的各个领域,应用范围遍及国防军事、医疗卫生及国民经济诸多部门。激光诞生不久就与生命科学结下不解之缘,在医学研究、临床治病方面日益显示其优势、其潜能深受人们关注。 光是生命系统赖以生存、成长的基本能源。植物依靠光合作用为人类提供了丰富的食粮,光对人体的作用、对体内肌体组织产生的刺激,影响着组织细胞结构、形态及其功能。长期以来这些一直是科学家研究的重要课题。作为光的一种特殊形态--激光,用于生命科学的研究早就受到重视,激光医学就是由此应运而生的一门新学科,它包括激光技术用于基础医学的研究、疾病诊断、临床治疗、预防保健等方面。  相似文献   

11.
This paper summarizes briefly the main experimental and numerical results of the IPPLM team studies on the generation of ultra-intense ion beams by a short (≤1?ps) laser pulse. Basic laser-driven ion acceleration schemes capable of generating such ion beams are described including the target normal sheath acceleration (TNSA) scheme, the skin-layer ponderomotive acceleration (SLPA) scheme and the laser-induced cavity pressure acceleration (LICPA) scheme. It is shown that an efficient way for achieving high ion beam intensities and fluencies lies in using a short-wavelength laser driver of circular light polarization. In such a case, SLPA clearly dominates over TNSA, and dense and compact ion bunch is generated with high energetic efficiency. The LICPA scheme operating in the photon (radiation) pressure regime can be even more efficient than SLPA. As it is demonstrated by particle-in-cell simulations, the LICPA accelerator with a picosecond, circularly polarized laser driver of intensity ~ 1021?W/cm2 can produce sub-picosecond light ion beams of intensity ~ 1022?W/cm2 and fluence?>?1?GJ/cm2 with the energetic efficiency of tens of percent. Laser-driven ion beams of such extreme parameters could open up new research areas in high-energy-density science, inertial fusion or nuclear physics.  相似文献   

12.
Intense beams of protons and heavy ions have been observed in ultra-intense laser-solid interaction experiments. Thereby, a considerable fraction of the laser energy is transferred to collimated beams of energetic ions (e.g. up to 50 MeV protons; 100 MeV fluorine), which makes these beams highly interesting for various applications. Experimental results indicate very short pulse duration and an excellent beam quality, leading to beam intensities in the TW range. To characterize the beam quality and its dependence on laser parameters and target conditions, we performed experiments at several high-power laser systems. We found a strong dependence on the target rear surface conditions allowing to tailor the ion beam by an appropriate target design. We also succeeded in the generation of heavy ion beams by suppressing the proton amount at the target surface. We will present recent experimental results demonstrating a transverse beam emittance far superior to accelerator-based ion beams. Finally, we will discuss the prospect of laser-accelerated ion beams as new diagnostics in laser-solid interaction experiements. Special fields of interest are proton radiography, electric field imaging, and relativistic electron transport inside the target.  相似文献   

13.
Laser cooling of Li-like C~(3+)and O~(4+)relativistic heavy ion beams is planned at the experimental Cooler Storage Ring(CSRe). Recently, a preparatory experiment to test important prerequisites for laser cooling of relativistic~(12)C~(3+)ion beams using a pulsed laser system has been performed at the CSRe. Unfortunately, the interaction between the ions and the pulsed laser cannot be detected. In order to study the laser cooling process and find the optimized parameters for future laser cooling experiments, a multi-particle tracking method has been developed to simulate the detailed longitudinal dynamics of laser-cooled ion beams at the CSRe. Simulations of laser cooling of the~(12)C~(3+)ion beams by scanning the frequency of the RF-buncher or continuous wave(CW) laser wavelength have been performed. The simulation results indicate that ion beams with a large momentum spread could be laser-cooled by the combination of only one CW laser and the RF-buncher, and show the requirements of a successful laser cooling experiment. The optimized parameters for scanning the RF-buncher frequency or laser frequency have been obtained.Furthermore, the heating effects have been estimated for laser cooling at the CSRe. The Schottky noise spectra of longitudinally modulated and laser-cooled ion beams have been simulated to fully explain and anticipate the experimental results. The combination of Schottky spectra from the highly sensitive resonant Schottky pick-up and the simulation methods developed in this paper will be helpful to investigate the longitudinal dynamics of RF-bunched and ultra-cold ion beams in the upcoming laser cooling experiments at the CSRe.  相似文献   

14.
In order to generate high quality ion beams through the stable radiation pressure acceleration(RPA) of the near critical density(NCD) target, we propose a new type of target where an ultra-thin high density(HD) layer is attached to the front surface of an NCD target, which has a preferable self-supporting property in the RPA experiments than the ultra-thin foil target. It is found that in one-dimensional particle-in-cell(PIC) simulation, by the block of the HD layer in the new target,there emerges the hole-boring process rather than propagation in the NCD layer when the intense laser pulse impinges on this target. As a result, a typical RPA structure that the compressed electron layer overlaps the ion layer as a whole is formed and a high quality ion beam is obtained, e.g., a circularly polarized laser pulse with normalized amplitude a_0= 120 impinges on this new target and a 1.2 GeV monoenergetic ion beam is generated through the RPA of the NCD layer. Similar results are also found in the two-dimensional PIC simulation.  相似文献   

15.
In the scope of relativistic quantum theory the high-order harmonic generation (HHG) in underdense plasma with the copropagating ultraintense laser and fast ion beams is considered. It is shown that in the proposed scheme the impeding factor of relativistic magnetic drift of a strong wave is fully eliminated (at the same velocities of the laser and ion beams the laser magnetic field affecting on the ions in plasma exactly is zero), which makes possible the effective generation of huge number of laser harmonics.  相似文献   

16.
We present a general expression for the maximum ion energy observed in experiments with thin foils irradiated by high-intensity laser pulses. The analytical model is based on a radially confined surface charge set up by laser accelerated electrons on the target rear side. The only input parameters are the properties of the laser pulse and the target thickness. The predicted maximum ion energy and the optimal laser pulse duration are supported by dedicated experiments for a broad range of different ions.  相似文献   

17.
Laser interactions with mass-limited targets (MLT) are studied via 2D3V relativistic electromagnetic PIC simulations. Analytical estimates are derived to clarify the simulation results. MLT limit undesirable spread of absorbed laser energy out of the interaction zone. MLT, such as droplets, are shown here to enhance the achievable fast ion energy significantly. For given target dimensions, the existence is demonstrated of an optimum laser beam diameter when ion acceleration is efficient and geometrical energy losses are still acceptable. Ion energy also depends on target geometrical form and shaped targets are found to be preferable for high ion energy.  相似文献   

18.
The laser-driven acceleration of high quality proton beams from a double-layer target, comprised of a high-Z ion layer and a thin disk of hydrogen, is investigated with three-dimensional particle-in-cell simulations for an obliquely incident laser pulse. The proton beam energy reaches its maximum at a certain incidence angle, where it can be much greater than the energy at normal incidence. The proton beam propagates at some angle with respect to the target surface normal and with some tilt around the target surface, as determined by the proton energy and the incidence angle.  相似文献   

19.
A novel regime is proposed where, by employing linearly polarized laser pulses at intensities 10(21) W cm(-2) (2 orders of magnitude lower than discussed in previous work [T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004)]), ions are dominantly accelerated from ultrathin foils by the radiation pressure and have monoenergetic spectra. In this regime, ions accelerated from the hole-boring process quickly catch up with the ions accelerated by target normal sheath acceleration, and they then join in a single bunch, undergoing a hybrid light-sail-target normal sheath acceleration. Under an appropriate coupling condition between foil thickness, laser intensity, and pulse duration, laser radiation pressure can be dominant in this hybrid acceleration. Two-dimensional particle-in-cell simulations show that 1.26 GeV quasimonoenergetic C(6+) beams are obtained by linearly polarized laser pulses at intensities of 10(21) W cm(-2).  相似文献   

20.
In order to achieve a high-quality, i.e., monoenergetic, intense ion beam, we propose the use of a double-layer target. The first layer, at the target front, consists of high-Z atoms, while the second (rear) layer is a thin coating of low-Z atoms. The generation of high-quality proton beams from the double-layer target, irradiated by an ultraintense laser pulse, is demonstrated with three-dimensional particle-in-cell simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号