首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An analytical model for time-of-flight (TOF) distributions of particles produced by pulsed laser ablation in vacuum has been proposed. The model takes into account the hydrodynamic expansion stage of the ablation plume and is based on a ‘sudden freeze’ model developed previously for steady-state supersonic jets. It is assumed that a continuum-like expansion of the plume takes place until a freezing time moment t free (or, alternatively, until a ‘freezing distance’ x free) whereupon the collisionless expansion begins. The proposed model is applied for analysis of experimental data on graphite ablation with nanosecond laser pulses. For verification, the analytical distributions are compared with calculated results obtained using a hybrid model combining a thermal model of laser-induced material heating with calculations of the plume dynamics by the direct simulation Monte Carlo (DSMC) method. It is shown that the proposed model can accurately estimate the surface temperature for conditions when the common approach fails.  相似文献   

3.
4.
5.
6.
The propagation of LaMnO3 laser ablation plume in oxygen background has been investigated using fast photography of overall visible plume emission and time-resolved optical emission spectroscopy. The plume expansion was studied with ambient oxygen pressures ranging from vacuum level to 100 Pa. Free-expansion, splitting, sharpening and stopping of the plume were observed at different pressures and time delays after the laser pulse. Time-resolved optical emission spectroscopy showed that oxides are mainly formed through reaction of the atomic species ablated from the target with oxygen in the gas-phase. These reactions mainly affect the content of lanthanum oxide in the plume, while emission of manganese oxide is barely observed in all the range of pressure investigated.  相似文献   

7.
Semiconducting tin oxide can be successfully deposited by means of the laser ablation technique. In particular by ablating metallic tin in a controlled oxygen atmosphere, thin films of SnO x have been deposited. The partial oxygen pressure at which the films are deposited strongly influences both the stoichiometry and the structural properties of the films. In this work, we present a study of the expansion dynamics of the plasma generated by ablating a tin target by means of a pulsed laser using time and space resolved optical emission spectroscopy and fast photography imaging of the expanding plasma. Both Sn I and Sn II optical emission lines have been observed from the time-integrated spectroscopy. Time resolved-measurements revealed the dynamics of the expanding plasma in the ambient oxygen atmosphere. Stoichiometry of the films has been determined by means of X-ray photoelectron spectroscopy and correlated to the expansion dynamics of the plasma.  相似文献   

8.
The use of amorphous chalcogenides offers advantages such as remarkable optical properties like a wide transmission window (∼1-20 μm) depending upon composition, making them suitable for sensitive detection of clinical or environmental changes. They also present interesting high (non)linear refractive indices, photorefractive effects, and other properties interesting for wavelength conversion, all-optical switching or modulation, Raman and parametric amplification, laser sources for mid-IR, etc.Slab waveguides based on chalcogenide amorphous films with good adherence and controlled composition can be obtained using pulsed laser deposition allowing to design and to manufacture complex optical functions on waveguides within a small and compact chip. The aim of this work is to characterize the ejection plume obtained by laser ablation of AsxSe100−x samples in order to get some insight on the process involved for optimizing the pulsed laser deposition process. The dynamics of the plume has been systematically investigated by ICCD camera fast imaging and space- and time-resolved optical emission spectroscopy for samples of various compositions.  相似文献   

9.
The dynamic behaviors and optical properties of a ZnO plasma plume produced by pulsed laser ablation using a Nd:YAG laser (wavelength: 532 nm, pulse width: 3 ns) were studied by fast photography using a commercial gated charge coupled device (CCD) camera linked with a delay circuit and by optical emission spectroscopy at various ambient oxygen pressures. Fast photography was conducted with a resolving power of 0.25 μs and the expansion behaviors of the laser ablation plume were observed. Plasma plume expansion velocity decreased with oxygen partial pressure. The flow of the plasma plume in the early stage of expansion of up to 3 ms agreed well with the drag model.  相似文献   

10.
Optical emission spectroscopic investigations of the plasma produced during Nd:YAG laser ablation of sintered TiO2 targets, in oxygen and argon gas environments are reported. The spatial variations of electron temperature (Te) and electron number density (Ne) are studied. The effect of oxygen/argon pressure on electron temperature (Te) and electron number density (Ne) is presented. The kinematics of the emitted particles and expansion of plume edge are discussed. Spatio-temporal variations of various species in TiO2 plasma were recorded and corresponding velocities were calculated. The effect of oxygen pressure on intensity of neutral/ion species and their corresponding velocities is also reported.  相似文献   

11.
Debarati Bhattacharya 《Pramana》2000,55(5-6):823-833
Emission plasma plume generated by pulsed laser ablation of a lithium solid target by a ruby laser (694 nm, 20 ns, 3 J) was subjected to optical emission spectroscopy: time and space resolved optical emission was characterised as a function of distance from the target surface. Propagation of the plume was studied through ambient background of argon gas. Spectroscopic observations can, in general, be used to analyse plume structure with respect to an appropriate theoretical plasma model. The plume expansion dynamics in this case could be explained through a shock wave propagation model wherein, the experimental observations made were seen to fit well with the theoretical predictions. Spectral information derived from measurement of peak intensity and line width determined the parameters, electron temperature (T e) and electron number density (n e), typically used to characterise laser produced plasma plume emission. These measurements were also used to validate the assumptions underlying the local thermodynamic equilibrium (LTE) model, invoked for the high density laser plasma under study. Some interesting results pertaining to the analysis of plume structure and spatio-temporal behaviour of T e and n e along the plume length will be presented and discussed.  相似文献   

12.
Among silver oxides, Ag4O4, i.e. high valence Ag(I)Ag(III) oxide, is interesting for applications in high energy batteries and for the development of antimicrobial coatings. We here show that ns UV pulsed laser deposition (PLD) in an oxygen containing atmosphere allows the synthesis of pure Ag4O4 nanocrystalline thin films, permitting at the same time to control the morphology of the material at the sub-micrometer scale. Ag4O4 films with a crystalline domain size of the order of tens of nm can be deposited provided the deposition pressure is above a threshold (roughly 4 Pa pure O2 or 20 Pa synthetic air). The formation of this particular high valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere. In particular, expansion of the PLD plasma plume is accompanied by formation of low stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. Evidence of reactive collisions in the expanding ablation plume is obtained by analysis of the plume visible shape in inert and reactive atmospheres. In addition, we show how the dimensionless deposition parameter L, relating the target-to-substrate distance to the ablation plume maximum expansion length, can be used to classify different growth regimes. It is thus possible to vary the stoichiometry and the morphology of the films, from compact and columnar to foam-like, by controlling both the gas pressure and the target-to-substrate distance.  相似文献   

13.
Time-resolved optical emission measurements have been made in laser-generated plumes following ArF-laser irradiation of GeO2 targets. The temporal behavior of Ge atoms is reported as a function of distance from the target surface and ambient pressure from vacuum to 200 m Torr of O2. An analysis of the expansion characteristics using a drag model provides good agreement with the experimental data and the dependence of the breaking of the plume expansion with oxygen pressure is established. The drag model analysis coupled with spectroscopic observations demonstrate a plume expansion process that is dominated by non-reactive collisional interactions between the background gas and the ejected species. The results of this study are also discussed with respect to thin-film deposition by laser ablation.  相似文献   

14.
The formation of the chemical composition of dichalcogenide films at pulsed laser deposition in vacuum and in rarefied gases (Ar, H2) is investigated with MoSe x thin-film coatings. It is found that deposition in gases increases the selenium concentration and somewhat flattens the composition over the substrate surface. To elucidate the mechanisms underlying the MoSe x film formation, a computer model is used that simulates the motion of a pulsed laser-initiated atomic flux through a rarefied gaseous medium. Using this model, the energy and angular parameters of atomic Mo and Se fluxes toward the substrate are calculated. It is shown that the expansion dynamics of laser plume components (Mo and Se) and the selective sputtering of selenium are the main factors governing the formation of the chemical composition and its distribution over the substrate. The influence of the sort of gas on the efficiency of atomic flux slowdown and scattering and on material losses during deposition is considered.  相似文献   

15.
The dynamics of the expansion of the plasma plume induced by laser ablation of a copper target at a fluence of 17 J/cm2 was investigated theoretically by means of a Monte Carlo simulation. When the expansion occurs under a relatively high pressure, the ambient gas particles may be involved in the collective motion of the plume. The simulation allows the study of the simultaneous collective motion of different species, such as the laser-ablated and the ambient gas particles. The influence of the background gas nature and pressure on the laser-induced plasma plume expansion behavior was studied. The expansion dynamics were found to be different in the case of the expansion in ambient gases of different molecular weight. The dynamics of the plume expansion under an argon pressure of 200 Pa seem to be strongly related to the equilibration of the pressure gradients in the gas phase, and evidence of the oscillatory behavior of the plume expansion was shown from the evolution over time of the pressure profiles in the plume. This behavior has also been observed in similar conditions for a krypton atmosphere, but for a lower pressure than for argon. The vortical flow formation at the plume periphery, involving both the laser-ablated and the argon particles at moderate pressure, was also predicted from the Monte Carlo simulation.  相似文献   

16.
Pulsed laser deposition of ZnO in high pressure gas offers a route for the catalyst-free preparation of ZnO nanorods less than 10 nm in diameter. This paper describes the results of some experiments to investigate the laser plume dynamics in the high gas pressure (5 × 103-104 Pa) regime used for PLD of ZnO nanorods. In this regime the ablation plume is strongly coupled to the gas and the plume expansion is brought to a halt within about 1 cm from the target. A 248 nm excimer laser was used to ablate a ceramic ZnO target in various pressures of argon. Time- and space-resolved UV/vis emission spectroscopy and Langmuir probe measurements were used to diagnose the plasma and follow the plume dynamics. By measuring the spatial profiles of Zn I and Zn II spectral lines it was possible to follow the propagation of the external and internal shock waves associated with the interaction of the ablation plume with the gas. The Langmuir probe measurements showed that the electron density was 109-1010 cm−3 and the electron temperature was several eV. At these conditions the ionization equilibrium is described by the collisional-radiative model. The plume dynamics was also studied for ZnO targets doped with elements which are lighter (Mg), comparable to (Ga), and heavier (Er) than Zn, to see if there is any elemental segregation in the plume.  相似文献   

17.
2 O5 targets in oxygen ambient are presented. Line assignments indicate the presence of the excited Ta(I), Ta(II), and TaO in the plume. At higher oxygen pressure, a single peak appears in the TaO emission spectrum from the laser ablation of Ta while two peaks corresponding to a fast and a slow component of TaO emission are observed from the laser ablation of the Ta2O5 target by time-resolved emission spectroscopy. The delay times after laser pulse corresponding to two components of TaO emission from the laser ablation of Ta2O5 have been investigated as a function of oxygen pressure, laser fluence, and observation distance from the target surface. The two components of TaO emission could be attributed to different pathways for the generation of excited TaO molecules. A blast wave model is proposed to describe the behavior of the excited TaO in the plume of laser ablation of Ta2O5. Received: 1 February 1997/Accepted: 12 March 1997  相似文献   

18.
Thin films of a-SiOx (0 < x < 2) were prepared by reactive r.f. magnetron sputtering from a polycrystalline-silicon target in an Ar/O2 gas mixture. The oxygen partial pressure in the deposition chamber was varied so as to obtain films with different values of x. The plasma was monitored, during depositions, by optical emission spectroscopy (OES) system. Energy dispersive X-ray (EDX) measurements and infra-red (IR) spectroscopy were used to study the compositional and structural properties of the deposited layers.Structural modifications of SiOx thin films have been induced by UV photons’ bombardment (wavelength of 248 nm) using a pulsed laser. IR spectroscopy and X-ray photoemission spectroscopy (XPS) were used to investigate the structural changes as a function of x value and incident energy. SiOx phase separation by spinodal decomposition was revealed. The IR peak position shifted towards high wavenumber values when the laser energy is increased. Values corresponding to the SiO2 material (only Si4+) have been found for laser irradiated samples, independently on the original x value. The phase separation process has a threshold energy that is in agreement with theoretical values calculated for the dissociation energy of the investigated material.For high values of the laser energy, crystalline silicon embedded in oxygen-rich silicon oxide was revealed by Raman spectroscopy.  相似文献   

19.
Optical emission of plasma is used to investigate the characteristics of dynamics distribution in the plume gen- erated by ablation of a SiC sample using Nd:YAG laser. The plume expansion dynamics is characterized by time-of-flight measurement. We find that the profiles of Si (I) (390.55 nm) split into two components and the Si (1I) (634. 71 nm) spectra show two distinct expansion dynamics regions. The time-of-flight measurement of Si(ll) (634. 71 nm) under different laser irradianee conditions, from 0.236 G W/cm^2 to 1.667 G W/cm^2, are presented and discussed.  相似文献   

20.
In this work we report on the properties of the ablation plume and the characteristics of the films produced by ultra-fast pulsed laser deposition (PLD) of TiO2 in vacuum. Ablation was induced by using pulses with a duration of ≈300 fs at 527 nm. We discuss both the composition and the expansion dynamics of the TiO2 plasma plume, measured by exploiting time- and space-resolved emission spectroscopy and gated imaging. The properties of the TiO2 nanoparticles and nanoparticle-assembled films were characterized using different techniques, i.e. environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). It is suggested that most of the material decomposes in the form of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号