首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Forty seven new CW FIR emissions lines have been observed in CH3I,13CH3I and CD3I, optically pumped by a CO2 laser and a N2 laser, in a metallic waveguide resonator. Assignments are given for a large number of these new lines.  相似文献   

2.
The spectrum of a partially oriented sample of ethanol has been analysed by making use of the simpler spectra obtained from the species CD3CH2OH and CH3CD2OH, together with 1H?{2H} double resonance. With p-ethoxy-benzylidene-p-n-butylaniline (EBBA) as the nematic solvent the dipolar couplings of CH3 and CH2 protons with the OH proton can be observed, and their magnitudes are compared with values calculated assuming different models for C-O-H internal rotation. Information on the quadrupole coupling constant tensor elements for CD3 and CD2 deuterium nuclei is obtained.  相似文献   

3.
The infrared and Raman spectra of CH3CH2CN, CH3CD2CN, and CD3CH2CN, and the infrared spectrum of CH3CH213CN were investigated in detail between 6000 and 100 cm−1. Some infrared measurements of other isotopic species are also reported and partial assignments given. All fundamentals of propionitrile-d0, -d2, -d3, and -13CN were assigned, together with a large number of mainly binary combination bands for which a general method of assignment is given. Several Fermi resonances were detected and the unperturbed positions of some of the levels involved were calculated. Special attention was paid to the CH stretching vibrations for which persisting wrong assignments exist in the literature, and to the methyl torsion frequencies which were determined for the four isotopic species above. A valence force field was calculated, and the potential energy distribution of the normal vibrations is tabulated.  相似文献   

4.
Methanol (CH3OH) is considered today one of the most important active media for the generation of laser radiation in the far-infrared (FIR) spectral region. Together with ten of its other isotopic species, it is responsible for the major part of the laser lines generated by the optical pumping technique. Due to the extreme importance of those molecules as laser generators, we understood that there was a necessity of a comprehensive work which would include as much pratical information as possible about each line.Chang et al(1) early recognized methanol as a source of strong FIR laser lines. Since then, more than 100 papers were published containing information about new laser emission. Recently, Moruzzi et al(114) presented a review of 575 lines produced by12CH3OH. In the present paper, we have extended the review to the various isotopic modifications of this molecule (namely13CH3OH, CD3OH,13CD3OH, CD3OD,13CD3OD, CH3OD, CH 3 18 OH, CH2DOH, CH2DOD and CHD2OH), a total of nearly 2000 lines with wavelengths ranging from 19µm to 3030µm.  相似文献   

5.
The technique of optical pumping in polar molecules is the most efficient for Far-Infrared (FIR) laser generation, providing also a versatile and powerful tool for molecular spectroscopy in this spectral region. Methanol (CH3OH) and its isotopic varieties are the best media for optically pumped FIR laser, with over thousand lines observed, and the most widely used for investigations and applications. In this sense, it is important organize and make available catalogues of FIR laser lines as complete as possible. Since the last critical reviews of 1984 [1] on methanol and its isotopic varieties [2,3,4], over hundred papers have been published dealing with hundreds of new FIR laser lines. In 1992 a review of FIR laser lines from CH3OH was presented [5]. In this communication we extend this work to the other methanol isotopes, namely CH3OD, CD3OH, CD3OD,13CH3OH,13CD3OH,13CD3OD, CH3 18OH, CH2DOH, CHD2OH and CH2DOD.Work supported by FAPESP, CNPq, FAEP-Brasil, and CNR-Italia  相似文献   

6.
《Molecular physics》2012,110(19-20):2419-2427
Accurate spectroscopic and geometric constants for CH3O2, and its isotopologues 13CH3OO, CH3 18O18O and CD3OO, are predicted. Employing coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)], we obtain optimized equilibrium geometries using Dunning's cc-pVTZ basis set. A Taylor expansion of the potential energy surface, including all third-order and semidiagonal fourth-order terms in a basis of normal coordinates, yields anharmonic vibrational frequencies and vibrationally-averaged properties including the effects of anharmonicity. We detail the strong influence of Fermi resonances on the problematic ν6 vibrational mode of CD3OO, arriving at a value of 993?cm?1; two previous experimental measurements of this mode appear to have been incorrectly assigned. Our computed energies for the low intensity ν11 transition are in excellent agreement with experimental measurements performed for CH3 18O18O and CD3OO, inspiring confidence that our results will serve as a guide for experimental measurement of this yet-unobserved quantity for the CH3OO and 13CH3OO isotopologues. Given the reliability of our force field, and considering the results of other experiments, we make a number of reassignments to previously recorded spectra, which eliminate large disagreements between experimental observations. The vibrational averaging of the rotational constants and geometries are also discussed for each isotopologue.  相似文献   

7.
Starting from force constant values calculated by an ab initio MO method (4-31G(N1)), and by adjusting the diagonal elements, a practical force constant matrix (F) has been reached which could explain the observed infrared and Raman spectra (in the frequency range lower than 2000 cm?1) of the gauche form of the ethylamine CH3CH2NH2 molecule and five isotopic species CH313CH2NH2, CH3CH215NH2, CH3CD2NH2, CH3CH2ND2, and CD3CD2NH2. The F matrix for the trans form of ethylamine was constructed by transferring ab initio 4-31G(N1) values and by revising diagonal elements with conversion factors whose values are equal to the corresponding values of gauche form. A nearly complete set of assignments was achieved of the vibrational bands of ethylamines, observed so far in the spectral range 2000–100 cm?1. In matrix isolation spectroscopy, two bands assignable to the NH2 wagging vibrations of gauche and trans forms have been found at 775 and 782 cm?1, respectively, for CH3CH2NH2. They are at 768 and 774 cm?1, respectively, for CD3CD2NH2. From the intensity changes of these bands observed on changing the nozzle temperature in the matrix formation, the energy difference ΔE (gauche-trans) of these two conformers has been estimated to be 100 ± 10 cm?1.  相似文献   

8.
The infrared gas-phase spectra of CH3CN, 13CH3CN, CH313CN, CH3C15N, CD3CN, and CD313CN have been studied in detail, in order to determine accurately the fundamental vibration frequency displacements on heavy isotopic substitution. A number of important Fermi resonances have been identified, and treated quantitatively. The unperturbed fundamental frequencies and heavy isotopic displacements form a self-consistent set of data, which, together with Coriolis zeta and centrifugal distortion constants, enable the harmonic potential function of methyl cyanide to be determined with only one constraint. A comparison between the latter and results from an ab initio calculation reveals disagreement in the values of two interaction constants, which seem well outside our experimental error. Infrared frequencies in crystalline films of CD3CN and CD313CN at 78 K are also reported.  相似文献   

9.
10.
Microwave transitions up to J = 53 in the ground vibrational state of deuterothioformaldehyde, CD2S, were studied between 8 and 40 GHz. A detailed centrifugal distortion analysis yields accurate constants for comparison with force field values. The isotopic species 13CH2S, CH234S, CH233S, 13CD2S, CD234S, and CD233S were studied in natural abundance. Accurate average zero-point structures were determined for both CD2S and CH2S:
CH2S CS=1.6138(4) CH = 1.0962(6) A?HCH =116° 16(6)′, CD2S CS=1.6136(4) CD = 1.0931(4) A?DCD =116° 25(5)′
Changes in the zero-point geometry for deuterium substitution were established. Quadrupole fine structure arising from the 33S nucleus has been measured in CH233S and CD233S. Analysis gives the following coupling constants (for both molecules) as χaa = ?11.7 and χbb - χcc = 88.1 MHz. The dipole moment of CD2S was measured to be 1.6588(8)D and an accurate comparison with CH2S was made; the ratio of dipole moments CD2SCH2S was found to be 1.0062(4). The spectroscopic and bonding properties of CH2S will be compared with formaldehyde and other molecules.  相似文献   

11.
The rotational spectra of CD335Cl, CD337Cl, CH336Cl, and CH337Cl in the ν2, ν3, ν5, and ν6 states were observed and analyzed. A few lines of the J = 3 → 2 transition were also detected for 12CD335Cl in the 2ν3 state and for 13CD335Cl in the ν3 state. For CH335Cl in the ν6 state the present data on the J = 1 ← 0 and J = 2 ← 1 transitions were combined with the millimeterwave spectra reported by Sullivan and Frenkel to determine the molecular constants. Special attention was given to the ν2 and ν5 spectra which showed the effect of Coriolis resonance. By transferring some of the constants involved from the laser-Stark spectra we determined B5*, B2*, and q5* for CD3Cl. The large effective q5 constant permitted observation of the direct l-doubling transitions of high J. The analysis of the CH3Cl spectra was much less complete than that on CD3Cl because of limited data. The B rotational constants obtained were compared with the previous microwave and infrared results when available.By using the infrared data on ν1 and ν4 we evaluated the equilibrium Be constants (α4B of CD337Cl was estimated), and refined the equilibrium structure of methyl chloride reported by Duncan.  相似文献   

12.
The ground state millimeter-wave spectra of CH3NCH2 and CD3NCD2 have been measured. The rotational constants, centrifugal distortion constants, and barrier hindering internal rotation of the methyl group have been determined for both species. For the parent species Iα and ?(i,a) were also obtained, and for the perdeuteriated species the quadrupole coupling constants of 14N were determined.  相似文献   

13.
A 13C16O2 laser optically pumping a FIR laser has resulted in 17 new FIR cw emissions from 78.5 μm to 917 μm. The FIR media were: CD3OD, CH3OD, CD3OH, NH3 and 15NH3. Interesting effects have been observed with a combination of NH3 and CD3OD resulting in a new FIR emission. Two new FIR emissions at 181.5 μm and 355.5 μm have been observed with a 12C16O2 laser optically pumping CD3OD.  相似文献   

14.
The infrared (from 4000 to 100 cm?1) and Raman spectra of CH2I2 and CD2I2 have been recorded in the liquid and gaseous phases. Assignments have been made for all observed bands and, in the case of CH2I2, compared with those previously reported. Some bands appearing in the CD2I2 spectrum have been attributed to the presence of CHDI2. The wavenumbers of the fundamental bands of CHDI2 have been calculated from those of CH2I2 and CD2I2 using Brodersen and Langseth's rule, and compared with those observed in the CD2I2 spectrum.  相似文献   

15.
Abstract

The high resolution (0.0010cm?1) Fourier transform infrared spectra of the partially deuterated methyl iodide molecules CH2DI and CHD21 have been recorded and analysed in the ν3 band regions around 510cm?1. The fundamental band ν3 is associated with the stretching of the C-I bond and the spectra appear therefore as an asymmetric rotor hybrid a/b-type band and hybrid a/c-type band for CH2DI and CHD2I, respectively. About 4700 transitions in the case of CH2DI and about 3900 transitions in the case of CHD2I have been assigned. The ground state rotational constants of CH2DI and CHD2I have been obtained using the ground state combination differences calculated from the assigned ν3 transitions and 16 microwave transitions from literature. The S reduced Watson's Hamiltonian has been used in the calculations. In addition, the upper state parameters describing the v3=1 vibrational states of these molecules have been determined. The obtained ground state constants as well as the upper state parameters have been compared to the corresponding constants of the symmetric top species CH3I and CD3I  相似文献   

16.
The rotational spectrum of (CH3OH)2 has been observed in the region 4-22 GHz with pulsed-beam Fabry-Perot cavity Fourier-transform microwave spectrometers at NIST and at the University of Kiel. Each a-type R(J), Ka = 0 transition is split into 15 states by tunneling motions for (CH3OH)2, (13CH3OH)2, (CH3OD)2, (CD3OH)2, and (CD3OH)2. The preliminary analysis of the methyl internal rotation presented here was guided by the previously developed multidimensional tunneling theory which predicts 16 tunneling components for each R(J) transition from 25 distinct tunneling motions. Several isotopically mixed dimers of methanol have also been measured, namely 13CH3OH, CH3OD, CD3OH, and CD3OD bound to 12CH3OH. Since the hydrogen bond interchange motion (which converts a donor into an acceptor) would produce a new and less favorable conformation from an energy viewpoint, it does not occur and only 10 tunneling components are observed for these mixed dimers. The structure of the complex is similar to that of water dimer with a hydrogen bond distance of 2.035 Å and a tilt of the acceptor methanol of 84° from the O-H-O axis. The effective barrier to internal rotation for the donor methyl group of (CH3OH)2 is ν3 = 183.0 cm−1 and is one-half of the value for the methanol monomer (370 cm−1), while the barrier to internal rotation of the acceptor methyl group is 120 cm−1.  相似文献   

17.
We obtained twelve new far infrared laser transitions by optically pumping the CH2DOH, CH3I, CD3I and Trioxymethylene molecules with a CW CO2 laser having a tunability range of 280 MHz. We measured the wavelength, polarization, relative intensity and pump offset relative to the CO2 center frequency for all the new lines.  相似文献   

18.
A three-laser heterodyne system was used to measure the frequencies of twelve previously observed far-infrared laser emissions from the partially deuterated methanol isotopologues 13CD3OH and CHD2OH. Two laser emissions, a 53.773 μm line from 13CD3OH and a 74.939 μm line from CHD2OH, have also been discovered and frequency measured. The CO2 pump laser offset frequency was measured with respect to its center frequency for twenty-four FIR laser emissions from CH3OH, 13CD3OH and CHD2OH. PACS 07.57.Hm; 42.55.Lt; 42.62.Eh  相似文献   

19.
Although the vibrational spectra and force constants of CH3CN and CD3CN have been thoroughly studied, partially deuterated methyl cyanide has received much less attention. The infrared spectrum of CD2HCN has only recently been reported1 and that of CH2DCN has not yet appeared. Normal coordinate analysis for neither partially deuterated species has appeared. We report here harmonic frequencies and potential energy distributions for both partially deuterated methyl cyanide species, CH2DCN and CD2HCN, based on force fields and structural parameters from CH3CN and CD3CN. The calculated frequencies for CD2HCN are compared with the observed infrared frequencies. The vibrational interaction of the relatively high CN stretching frequency and the CD stretching frequencies is also discussed.  相似文献   

20.
Thirteen new submillimetre emission lines have been observed when pumping CH3OD using isotopic CO2 lasers, and fourteen when pumping CD3OD. Three isotopic CO2 lasers were used12C16O2,12C18O2, and13C16O2. The new lines were observed in a Fabry-Perot resonator. The wavelength ranges observed were from 55 to 320 m for CH3OD and from 66 to 531 m for CD3OD. The polarisation of the submillimetre laser lines relative to the CO2 pump line has also been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号