首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The rotational structure of bands of NO2 vapor in the region 8300–9000 Å has been partially analyzed and the absorption assigned to the (000)-(000) and (000)-(010) vibronic bands of the A?2B2X?2A1 electronic transition. Irregular weak perturbations in the N-structure of the upper-state manifold are accompanied by larger resonance-type crossings in the K-structure. The larger perturbation is attributed to vibronic coupling between the à state and excited vibrational levels of the ground state, characterized by a low density of ground state levels and a large vibronic coupling matrix element between the à and X? states. The reconstituted, deperturbed bands have blue-degraded N-structure and strongly red-degraded K-structure, indicating that the bond angle decreases sharply in the excited state. The physical structure of the 2B2 state is uncertain but some suggestions are made. The electronic energy of the 2B2 state is T0 = 11 962.9 cm?1.  相似文献   

2.
The (1-0), (2-0), and (3-0) transitions of 15N16O and 15N18O are investigated. The wavenumbers of the rotation-vibration lines are reported for the overtone bands and the 2Π32-2Π12 (1-0) subband. It is shown that in the data reduction it is advantageous to calculate first merged spectroscopic constants ignoring the Λ-type doubling. The vibrational constants ωe, ωexe, ωeye and the vibrational dependence of the rotational constants are determined. The study of 15N18O allows the determination of the equilibrium values of the centrifugal distortion correction ADe to the spin-orbit constant and of the spin-rotation constant γe from the isotopic invariance of the ratios ADeBe and γeBe. It is found that ADeBe = (?3.9 ± 1.3) × 10?6 and γeBe = (?4.00 ± 0.05) × 10?3.  相似文献   

3.
The emission spectrum of B2 was reinvestigated under high resolution. Six bands of 11B2 (0-0, 1-1, 1-0, 2-1, 3-2, and 0–1) as well as four bands of 10B11B (0-0, 1-0, 2-1, and 3-2) were rotationally analysed. Accurate rotational and vibrational constants were obtained. The triplet character of the transition (3Σu?-X 3Σg?) was unambiguously established for the first time and spin-spin interaction constant is obtained for the excited state.  相似文献   

4.
Some spectroscopic properties of the low-energy electronic states of 9-fluorenone have been examined. The spectra in paraffin matrices at 4.2°K show detailed vibrational spectra. Two fluorescence spectra are observed; a diffuse emission arises from 9-fluorenone crystals in the paraffin matrix, and a sharp emission is characteristic of the molecule. The sharp fluorescence is analyzed in terms of known a1 vibrational fundamentals. The sharp absorption is a near mirror-image to the fluorescence, so Herzberg-Teller vibrations are not prominent. The polarization in the crystal spectrum allows this low-energy transition near 23 000 cm?1 to be assigned 1B21A1. Because there is no vibronic perturbation in fluorescence, and certainly no out-of-plane modes, a π1 ← n transition seen at about 26 000 cm?1 is tentatively assigned 1B11A1. Another sharp absorption system is seen at 31 000 cm?1 in the paraffin matrices at 4.2°K (linewidth 6 cm?1) but no fluorescence was detected. The polarized crystal spectrum indicated the assignment of this system and another very strong system at 40 000 cm?1 to be 1B21A1, while other systems at about 34 000 cm?1 and 44 000 cm?1 are 1A11A1.The phosphorescence spectrum of pyrene-d10 held in a single crystal of 9-fluorenone at 4.2°K has been recorded. No delayed fluorescence from the host crystal is observed at 4.2°K but is intense at 77°K. The energy difference between host and guest triplet levels is estimated to be about 900 cm?1 allowing the lowest triplet state of 9-fluorenone to be placed at 17 800 cm?1.  相似文献   

5.
Laser-induced fluorescence excitation spectra of the HNO A?1A″-X?1A′ band system have been recorded with high sensitivity. This has enabled detection of the Franck-Condon unfavored vibronic bands (002)-(000) and (003)-(000), thereby completing the set of fully bound vibronic levels in the A? state. Extensions have also been made to other bands. A strong Coriolis resonance between the Ka1 = 8 levels of the excited (010) vibronic state and the Ka1 = 9 levels of the (001) state leads to rotational perturbations of up to 9 cm?1. The (100-000) band includes weak axis-tilting branches. It is concluded from the vibrational energy level spacings that vibronic interaction makes an important contribution to the energies of the higher bending levels, consistent with the correlation of the A?1A″ state with a component of a 1Δ state for linear HNO.  相似文献   

6.
The electronic absorption spectra of thioformaldehyde and thioformaldehyde-d2 have been obtained. A vibrational analysis of the discrete band system in the 6100-4400-Å region is reported. The type A origin bands are at 16 39416 484cm?1 for CH2SCD2S, and are magnetic dipole allowed. The electronic transition is A?1A2-X?1A1 under the C2v point group. Most of the intensity of the system is in type B bands, and is due to vibronic mixing with higher 1B2 states when the inversion mode ν4 is excited. The molecule in the excited 1A2 state is “floppy-planar,” having a broad potential function with a barrier of the order of 20 cm?1 to the inversion motion.  相似文献   

7.
New fluorescence excitation and dispersed SVL fluorescence spectra of s-tetrazine vapor in supersonic expansions of helium and argon are reported. A forbidden in-plane-polarized component of the A?1B3u-X?1Ag transition is discovered at (0, 0) + 578 cm?1 with a type-B band contour in rotationally resolved excitation spectra obtained with a single-frequency cw ring dye laser. Linewidth measurements of single rovibronic transitions provide data to calculate lifetimes of low-lying S1 vibronic states of the isolated molecule. Depending on the vibrational mode involved, the lifetime varies from 0.05 to greater than 1 nsec. The number of cold-band assignments in the absorption spectrum of s-tetrazine vapor now confirmed by analysis of SVL fluorescence spectra increases from three to ten.  相似文献   

8.
Sub-Doppler excitation spectra of NO2, covering four vibronic bands within the spectral range from 16 861 to 16 903 cm?1, were measured with a resolution of down to 10 MHz in a collimated supersonic molecular beam. Unambiguous assignment of all prominent lines in the 42-cm?1-wide interval of the 2B22A1 excitation spectrum was achieved by recording for each excitation line at least four vibrational bands of the corresponding fluorescence spectrum with completely resolved rotational lines. From least-squares fits to the line positions in the excitation spectra the rotational, fine, and hyperfine structure of the 2B2 state was analyzed. A perturbation analysis, based on information from both types of spectra, confirms earlier models of vibronic coupling with high-lying vibrational levels of the 2A1 ground state and gives evidence for spin-orbit coupling. Possible models are discussed which may explain the observed perturbations.  相似文献   

9.
A rotational assignment of approximately 80 lines with Ka′ = 0, 1, 2, 3, and 4 has been made of the 593 nm 2A12B2 band of NO2 using cw dye laser excitation and microwave optical double-resonance spectroscopy. Rotational constants for the 2B2 state were obtained as A = 8.52 cm?1, B = 0.458 cm?1, and C = 0.388 cm?1. Spin splittings for the Ka′ = 0 excited state levels fit a simple symmetric top formula and give (?bb + ?cc)2 = ?0.0483 cm?1. Spin splittings for Ka′ = 1 (N′ even) are irregular and are shown to change sign between N′ = 6 and 8. Assuming that the large inertial defect of 4.66 amu Å2 arises solely from A, a structure for the 2B2 state is obtained which gives r (NO) = 1.35 A? and an ONO angle of 105°. Alternatively, weighting the three rotational constants equally gives r = 1.29 A? and θ = 118°.  相似文献   

10.
Laser-induced fluorescence excitation has been used to measure Stark splittings of selected lines in the A?1A2-X?1A1 and a?3A2-X?1A2 band systems of H2CS in electric fields up to 13 kV/cm. The derived excited state a-axis dipole moments are 0.820 ± 0.007 D for the 41 level of the 1A2 state; 0.838 ± 0.008 D for the zeroth vibrational level of 1A2; and 0.534 ± 0.015 D for the zeroth vibrational level of the 3A2 state. These results are compared with the corresponding values of H2CO, and interpreted in terms of the changing localization of the π and π1 orbitals accompanying electronic excitation.  相似文献   

11.
The absorption and fluorescence spectra of pyrazine have been observed in vapor, solution and crystal, and the vibrational structures have been analyzed in detail. The fluorescence spectrum consists of long progressions of the nontotally symmetric vibration ν5(b2g), and the absorption spectrum contains also the progression of the corresponding excited state vibration ν5(b2g. However, the pattern of the latter progression is unusual because of the highly anharmonic nature of the potential of the 1B3u state, which may be expressed by a functional form containing a quadratic term in the normal coordinate. All the experimental results suggest that the known vibronic interaction between the 1B3u(n,π1) state and the 1B1u(π, π1) state through the vibration ν2(b2g) is strong. The vibronic coupling and the potential of the 1B3u state were found to be very sensitive to solvent.  相似文献   

12.
Discharges through mixtures of helium and neon show two band groups near 4250 and 4100 Å as first observed by Druyvesteyn. These bands, assigned to the HeNe+ ion by Tanaka, Yoshino, and Freeman, have been studied under high resolution and have been fairly completely analyzed. The upper state of the transition is a very weakly bound state resulting from He+(2S) + Ne(1S0). There are two lower states resulting from the two components of Ne+(2P) + He(1S0). The upper of these two (2Π12) is also very weakly bound while the lower of the two, the 2Σ+ ground state, has a dissociation energy of 0.69 eV and an re value of 1.30 Å. All bands in both band groups show four branches designated Rff, Qef, Qfe, and Pee. From their analysis the rotational constants in the various vibrational levels of the three electronic states have been determined. While no spin splitting in the B2Σ+ state has been found the ground state X2Σ shows a very large spin splitting and the A22Π12 state a very large Ω-type doubling. The vibrational numberings in all these states were established by the study of the spectrum of 3HeNe+. At the same time the hyperfine structure observed in all lines of 3HeNe+ confirmed the nature of the upper state B2Σ+ as resulting from He+ + Ne, i.e., by charge exchange from the ground state. The 2Π12 component of the 2Π state has not been observed, presumably because of low intensity.  相似文献   

13.
14.
A theoretical model used to describe the B′3Σu? and B3Πg states of N2 is presented. Using recently acquired high resolution spectra of the B′3Σu? → B3Πg (0-0) band, rotational energy levels of the v = 0 vibrational levels of these two states are generated with this model. These levels are in excellent agreement with those obtained using a combination differences technique. The precision of the model generated levels is 0.01 cm?1. The previously unpublished rotational levels of Dieke and Heath for the A3Σu+, B3Πg and C3Πu states are referenced to the N2X1Σg+ (v = 0, J = 0) ground level and tabulated here. Estimates of the precision of their work are made.  相似文献   

15.
Revised and more complete vibrational assignments are made for the 3540-Å π1 ← n band system of malonaldehyde. The 0+0? tunneling splitting is found to be 19 ± 11 cm?1 for the 1 state and this represents a 7-cm?1 decrease relative to the ground electronic state. The tunneling splitting and the Franck-Condon envelope of intensities in the 185-cm?1 upper-state progression suggest that the 1B1(nπ1) state is significantly less tightly hydrogen-bonded than the ground 1A1 state.  相似文献   

16.
Lines in the ν3 (“antisymmetric” stretch) fundamental of the NCO radical in the X?2Π state were studied by CO laser magnetic resonance. The observations were assigned to P and R lines in the vibration-rotation band and lead to a precise determination of the vibrational interval and the anharmonic correction to the rotational constant: ν3 = 1920.60645(19) cm?1, α3 = 0.003338(21) cm?1. A single transition in the hot band (011)-(010), 2Δ52-2Δ52 was detected. This observation is used to determine the origin of the hot band as 1907.11892(20) cm?1, i.e., the anharmonicity parameter x23 = ?13.48753(28) cm?1.  相似文献   

17.
If KS1,Lis a K1 resonance decaying into KS,L (the short- and long-lived kaon) and a neutral system So of pions, one can isolate the C-even and C-odd, crossed-channel contributions to KN → K1N by using the reactions KLN → KS1, LN whether So is a C-eigenstate, or a mixture of C-even and C-odd states. Applications to the production of K1(890) and the Q-meson are discussed, and simple numerical predictions made for QS,L production. Q-production data indicate approximate t-channel helicity conservation for the ω and P' exchanges at vertices involving a spin change, in similarity to the belief for the pomeron. QS,L production data can give information also on Q-decays.  相似文献   

18.
Applying the generalized centroid shift method in (α, 2n) reactions, the half-lives of the 3080 keV 15+ state in 176Hf and of the 1637 keV 5? state in 178Hf have been measured as T12 = 0.20+0.12?0.08ns and T12 = 0.40 ± 0.10 ns, respectively. B(El) values of K-allowed E1 transitions n92+ [624]→ 72? [514] are derived, and together with other data on similar transitions in odd-A nuclei, compared with predictions of the Nilsson plus pairing model. In 176Hf, the 15+ and 14? states at 3080 and 2866 keV, respectively, appear as quite pure deformed 4QP configurations. In the 2QP state at 1637 keV in 178Hf, possible strong mixing of vibrational components is discussed coupled via 2QP K-admixtures arising from the partial alignment of the i132 neutron.  相似文献   

19.
No perturbation between two valence states of NO has ever been identified, although many valence-Rydberg and several Rydberg-Rydberg perturbations have been extensively studied. The first valence-valence crossing to be experimentally documented for NO is reported here and occurs between the 15N18O B2Π (v = 18) and B2Δ (v = 1) levels. No level shifts larger than the detection limit of 0.1 cm?1 are observed at the crossings near J = 6.5 [B 2Π(F1) ~ B′ 2Δ(F2)] and J = 12.5 [B 2Π(F1) ~ B′ 2Δ(F1)]; two crossings involving higher rotational levels could not be examined. Semi-empirical calculations of spin-orbit and Coriolis perturbation matrix elements indicate that although the electronic part of the B 2Π ~ B′ 2Δ interaction is large, a small vibrational factor renders the 15N18O B (v = 18) ? B′ (v = 1) perturbation unobservable. Semi-empirical estimates are given for all perturbation matrix elements of the operators Σia?ili·si and B(L±S? ? J±L?) which connect states belonging to the configurations (σ2p)2(π2p)412p), (σ2p)(π2p)412p)2, and (σ2p)2(π2p)312p)2.  相似文献   

20.
The (0,0) band of the B′Σu? → B3Πg emission (Infrared Afterglow) system of molecular nitrogen has been recorded with a resolution of 0.046 cm?1 and a line position accuracy of 0.007 cm?1. Six hundred and seventy-two lines are tabulated into a line list for the 1.53 μm (low-resolution) emission feature. Of these, 482 are assigned as members of the 27 branches of the B′ → B transition, while 150 are identified with the 1PG (3,6) band. Molecular constants for the v = 0 levels of the B′3Σu? and B3Πg states have been computed and tabulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号