首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the multispan Timoshenko beam carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and spring–mass systems. First, the coefficient matrices for an intermediate pinned support, an intermediate concentrated element, left- and right-end support of a Timoshenko beam are derived. Next, the overall coefficient matrix for the whole structural system is obtained using the numerical assembly technique of the finite element method. Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of distribution of in-span pinned supports and various concentrated elements on the dynamic characteristics of the Timoshenko beam are also studied.  相似文献   

2.
This paper presents a hybrid holographic-numerical method for modal analysis of complex structures. A continuous structure is first lumped into a number of discrete elements to form an elastically connected lumped linear system. The matrix of influence coefficients of the lumped linear system are then determined by exerting a static load to the element centers and measuring the corresponding whole-field displacement using digital holographic interferometry. The eigenvalues and eigenvectors of the influence coefficients, which in a physical sense represent the natural frequencies and mode shapes of the structure, are then calculated using the numerical method. A major advantage of the proposed hybrid method is that it is not necessary to know the Young's modulus, the Poisson's ratio of the material and the boundary conditions, as the displacement field measured by the optical method has automatically reflected the real boundary conditions and the material properties, which makes this method particularly useful for studying objects made from anisotropic materials such as composites. Another advantage of the proposed method is that structures of any complex and irregular shape will not increase the complexity of the characterization process. The proposed is also suitable for experimentally validating the modal analysis results from finite element method models.  相似文献   

3.
A new analytical method was developed to predict the in-plane mode shapes and the natural frequencies of a ring with widely distributed deviation. The Laplace transform was used to find the exact solution of eigenvalue problem without assuming any trial functions and finite elements. The widely distributed deviation was effectively formulated in the theory using Gauss-Legendre quadrature. The validity of the proposed method was examined through finite element analysis and modal test. The effects of partial change of the density, the stiffness, and the thickness on the natural frequencies of the ring were investigated.  相似文献   

4.
Spectral finite element methods are used to compute exact vibration solutions of structural models at specific frequencies. The applicability of these methods to certain areas of structural dynamics is limited by two major factors: the lack of separate structural operators (mass, damping, and stiffness matrices), and the subsequent difficulty in computing mode shapes via eigenvalue decomposition. In the work presented in this article, a method is investigated to accurately calculate spectral finite elements while overcoming these limitations. The approach incorporates a two-dimensional, discrete solution utilizing a wavenumber-based gridding technique to compute frequency-dependent local mass, damping, and stiffness matrices which can be assembled into the global structural operators. Computed models are able to be used for precise vibration analysis as well as modal analysis via eigenvalue decomposition of the structural operators.  相似文献   

5.
The governing equation for longitudinal free vibration of a one-step non-uniform bar is reduced to an analytically solvable equation by selecting suitable expressions, such as power functions and exponential functions, for the area variation. The analytical solutions of one-step non-uniform bars are derived and used to obtain the mode shape functions of a multi-step bar with or without lumped masses and spring supports. The eigenvalue equation of such a multi-step bar can be easily established using the fundamental solutions developed in this paper. The new exact approach is presented which combines the recurrence formula and closed form solutions of one step bars. A numerical example demonstrates that the calculated natural frequencies and mode shapes of a high-rise structure are in good agreement with the corresponding experimental data, verifying the accuracy of the proposed method. This numerical example also shows that one of the advantages of the present method is that the total number of the elements required in the proposed method could be much less than that normally used in conventional finite element methods.  相似文献   

6.
Total potential energy of non-symmetric thin-walled beam-columns in the general form is presented by introducing the displacement field based on semitangential rotations and deriving transformation equations between displacement and force parameters defined at the arbitrary axis and the centroid-shear center axis, respectively. Next, governing equations and force-deformation relations are derived from the total potential energy for a shear-deformable, uniform beam element and a system of linear eigenproblem with non-symmetric matrices is constructed based on 14 displacement parameters. And then explicit expressions for displacement parameters are derived and exact dynamic stiffness matrices are determined using force-deformatin relationships. In addition, the modified numerical method to eliminate multiple zero eigenvalues and to evaluate the exact static stiffness matrix is developed for spatial stability analysis. Finally, in order to demonstrate the validity and the accuracy of this study, the spatially coupled natural frequencies and buckling loads are evaluated and compared with analytical solutions or results analyzed by thin-walled beam elements and ABAQUS's shell elements.  相似文献   

7.
Superconducting turbogenerators with a “double rotor structure” have a torsional natural frequency within the generator, the outer rotor moving in opposition to the inner rotor. For large machines this natural frequency may approach 100 Hz. In this paper a finite element model and simple lumped mass and spring models of the rotor, for the calculation of the undamped torsional natural frequencies, are described and compared. A method by which equivalent spring stiffnesses for both the inner and outer rotors can be derived is described, allowing one to use a rotor model with one lumped mass and equivalent spring stiffness for each of the inner and outer rotors. Such a rotor model can be readily used for studying electromagnetic interaction effects and assessing fault torques in the outer rotor and inner rotor torque tubes.  相似文献   

8.
The natural vibration frequencies and mode shapes of a curved cylindrical blade with a weighted edge are investigated. A finite element method is used, in which curved cylindrical shell finite elements are utilized to model the blade. The weighted edge is modelled as a beam with its stiffness and mass added into the stiffness and mass of the blade. Vibration frequencies and mode shapes for blades with different boundary conditions and with different radii of curvature are obtained. Finite element results are compared with experimental results.  相似文献   

9.
In this paper, explicit for mass and stiffness matrices of two higher order tapered beam elements for vibration analysis are presented. One possesses three degrees of freedom per node and the other four degrees of freedom per node. The four degrees of freedom of the latter element are the displacement, slope, curvature and gradient of curvature. Thus, this element adequately represents all the physical situations involved in any combination of displacement, rotation, bending moment and shearing force. The explicit element mass and stiffness matrices eliminate the loss of computer time and round-off-errors associated with extensive matrix operations which are necessary in the numerical evaluation of these expressions. Comparisons with existing results in the literature concerning tapered cantilever beam structures with or without an end mass and its rotary inertia are made. The higher order tapered beam elements presented here are superior to the lower order one in that they offer more realistic representations of the curvature and loading history of the beam element. Furthermore, in general the eigenvalues obtained by employing the higher order elements converge more rapidly to the exact solution than those obtained by using lower order one.  相似文献   

10.
The flow-induced vibration characteristics of anisotropic laminated cylindrical shells partially or completely filled with liquid or subjected to a flowing fluid are studied in this work for two cases of circumferential wave number, the axisymmetric, where n=0 and the beam-like, where n=1. The shear deformation effects are taken into account in this theory; therefore, the equations of motion are determined with displacements and transverse shear as independent variables. The present method is a combination of finite element analysis and refined shell theory in which the displacement functions are derived from the exact solution of refined shell equations based on orthogonal curvilinear co-ordinates. Mass and stiffness matrices are determined by precise analytical integration. A finite element is defined for the liquid in cases of potential flow that yields three forces (inertial, centrifugal and Coriolis) of moving fluid. The mass, stiffness and damping matrices due to the fluid effect are obtained by an analytical integration of the fluid pressure over the liquid element. The available solution based on Sanders' theory can also be obtained from the present theory in the limiting case of infinite stiffness in transverse shear. The natural frequencies of isotropic and anisotropic cylindrical shells that are empty, partially or completely filled with liquid as well as subjected to a flowing fluid, are given. When these results are compared with corresponding results obtained using existing theories, very good agreement is obtained.  相似文献   

11.
This paper developed a finite element method to perform the maglev train–bridge–soil interaction analysis with rail irregularities. An efficient proportional integral (PI) scheme with only a simple equation is used to control the force of the maglev wheel, which is modeled as a contact node moving along a number of target nodes. The moving maglev vehicles are modeled as a combination of spring-damper elements, lumped mass and rigid links. The Newmark method with the Newton–Raphson method is then used to solve the nonlinear dynamic equation. The major advantage is that all the proposed procedures are standard in the finite element method. The analytic solution of maglev vehicles passing a Timoshenko beam was used to validate the current finite element method with good agreements. Moreover, a very large-scale finite element analysis using the proposed scheme was also tested in this paper.  相似文献   

12.
For the purpose of developing a vibration-based tension force evaluation procedure for bridge cables using measured multimode frequencies, an investigation on accurate finite element modelling of large-diameter sagged cables taking into account flexural rigidity and sag extensibility is carried out in this paper. A three-node curved isoparametric finite element is formulated for dynamic analysis of bridge stay cables by regarding the cable as a combination of an “ideal cable element” and a fictitious curved beam element in the variational sense. With the developed finite element formulation, parametric studies are conducted to evaluate the relationship between the modal properties and cable parameters lying in a wide range covering most of the cables in existing cable-supported bridges, and the effect of cable bending stiffness and sag on the natural frequencies. A case study is eventually provided to compare the measured natural frequencies of main cables of the Tsing Ma Bridge and the computed frequencies with and without considering cable bending stiffness. The results show that ignoring bending stiffness gives rise to unacceptable errors in predicting higher order natural frequencies of the cables, and the proposed finite element formulation provides an accurate baseline model for cable tension identification from measured multimode frequencies.  相似文献   

13.
An added mass matrix estimation method for beams partially immersed in water is proposed that employs dynamic responses, which are measured when the structure is in water and in air. Discrepancies such as mass and stiffness matrices between the finite element model (FEM) and real structure could be separated from the added mass of water by a series of correction factors, which means that the mass and stiffness of the FEM and the added mass of water could be estimated simultaneously. Compared with traditional methods, the estimated added mass correction factors of our approach will not be limited to be constant when FEM or the environment of the structure changed, meaning that the proposed method could reflect the influence of changes such as water depth, current, and so on. The greatest improvement is that the proposed method could estimate added mass of water without involving any water-related assumptions because all water influences are reflected in measured dynamic responses of the structure in water. A five degrees-of-freedom (dofs) mass-spring system is used to study the performance of the proposed scheme. The numerical results indicate that mass, stiffness, and added mass correction factors could be estimated accurately when noise-free measurements are used. Even when the first two modes are measured under the 5 percent corruption level, the added mass could be estimated properly. A steel cantilever beam with a rectangular section in a water tank at Ocean University of China was also employed to study the added mass influence on modal parameter identification and to investigate the performance of the proposed method. The experimental results demonstrated that the first two modal frequencies and mode shapes of the updated model match well with the measured values by combining the estimated added mass in the initial FEM.  相似文献   

14.
This paper employs the numerical assembly method (NAM) to determine the “exact” frequency–response amplitudes of a multiple-span beam carrying a number of various concentrated elements and subjected to a harmonic force, and the exact natural frequencies and mode shapes of the beam for the case of zero harmonic force. First, the coefficient matrices for the intermediate concentrated elements, pinned support, applied force, left-end support and right-end support of a beam are derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact dynamic response amplitude of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force is determined by solving the simultaneous equations associated with the last overall coefficient matrix. The graph of dynamic response amplitudes versus various exciting frequencies gives the frequency–response curve for any point of a multiple-span beam carrying a number of various concentrated elements. For the case of zero harmonic force, the above-mentioned simultaneous equations reduce to an eigenvalue problem so that natural frequencies and mode shapes of the beam can also be obtained.  相似文献   

15.
16.
The combined use of the finite element and transfer matrix techniques (FETM) for the study of dynamic problems was proposed a few years ago, in order to overcome the large amount of computer storage and long computation time that the finite element technique often requires. In this paper some interesting applications are emphasized for both static and dynamic problems of structures. A great deal of attention has been paid to the use of shell isoparametric elements for very thin structures, where the usual numerical integration by a two-by-two Gaussian quadrature of the stiffness matrix leads to an ineffective increase of stiffness in the structure. Particularly appealing seems to be the use of quadratic shell elements in the FETM method, because even with a reduction in the total number of elements of the structure it is possible to increase the accuracy of results. Computation time is appreciably reduced by this method, because of the notable lowering of the final matrix order, the manipulation of which gives the solution of the problem. Some results for natural frequencies of a thin plate are finally presented, showing a favourable agreement with those obtained by other proposed methods.  相似文献   

17.
Designers often want to analyze more and more sophisticated structures, thus leading to very large finite element models (typically 10 00 000 degrees of freedom for a body car, for example). These models being too costly for the early stages of design and optimization can be reduced by a substructure analysis or a mesh simplification of the components. A methodology is proposed in this paper for simplifying finite triangular plate element models leading to a dramatic reduction in the number of degrees of freedom while preserving the dynamical properties of the initial system. In particular, the proposed method is developed for models composed of the plate element STIFF63 generated by the software ANSYS. The principle consists in determining the parameters (thickness, Young's modulus, density) of the triangular elements of a coarse model which replaces a large set of elements of the refined model. The simplified mesh must satisfy one of two criteria. The first requires that the mass and stiffness matrices of the simplified model be as close as possible to the Guyan condensed matrices of the refined model on the reduced node set, whilst the second requires that the dynamical properties of the global structure be preserved. The application of these approaches is illustrated on two test structures using the gradient method to solve the resulting optimization problem. The second approach is shown to give the best results. Typically, the size of the models can be reduced by a factor of 20 whilst preserving the dynamical properties of the structure at low frequencies.  相似文献   

18.
A new spectral finite element formulation is presented for modeling the sloshing and the acoustic waves in nearly incompressible fluids. The formulation makes use of the Legendre polynomials in deriving the finite element interpolation shape functions in the Lagrangian frame of reference. The formulated element uses Gauss–Lobatto–Legendre quadrature scheme for integrating the volumetric stiffness and the mass matrices while the conventional Gauss–Legendre quadrature scheme is used on the rotational stiffness matrix to completely eliminate the zero energy modes, which are normally associated with the Lagrangian FE formulation. The numerical performance of the spectral element formulated here is examined by doing the inf–sup test on a standard rectangular rigid tank partially filled with liquid. The eigenvalues obtained from the formulated spectral element are compared with the conventional equally spaced node locations of the h-type Lagrangian finite element and the predicted results show that these spectral elements are more accurate and give superior convergence. The efficiency and robustness of the formulated elements are demonstrated by solving few standard problems involving free vibration and dynamic response analysis with undistorted and distorted spectral elements, and the obtained results are compared with available results in the published literature.  相似文献   

19.
A method for the dynamic analysis of continuously and non-proportionally damped plates is discussed. The method is quite general and suitable for various damping treatments, such as in multilayer plates with damping layers. The transverse vibrations of partially coated plates under harmonic excitation are analyzed by the proposed method. The results of the undamped modal analysis made by classical finite element methods are used in the suggested lumped parameter analysis. The receptance matrices of coated plates have been computed at undamped natural frequencies. The computational results have been verified by comparison with experimental values for partially and fully coated rectangular plates.  相似文献   

20.
This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号