首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
量子逻辑门是实现量子计算的基本组件之一,而高保真度和高鲁棒性是量子逻辑门必不可少的关键性质。在实现量子逻辑门的各种方法中,利用几何相位的全局特性来构造量子逻辑门是一个有效的方法,它可以对一些局域扰动有比较好的容错性。本文在非绝热几何量子计算的框架下,在三能级系统中构造出了任意的单比特量子逻辑门,并创建出在实验中方便实现的脉冲形式。本文进一步研究了量子系统中存在频率失谐和脉冲振幅偏差的情况,并考虑量子系统与环境之间的退相干效应,以设计出具有更好鲁棒性能的脉冲波形。  相似文献   

2.
朱诗亮  汪子丹 《物理》2005,34(11):793-796
用量子空腔耦合的超导电荷比特器件被认为是实现量子信息处理的相当有希望的体系之一.如何在这种可集成的量子体系中实现高保真度的操作是量子信息处理领域的重要课题.文章介绍作者最近提出的在量子腔耦合的超导量子比特中用具有内禀容错功能的几何操作来实现普适量子逻辑门,产生多比特量子纠缠及实现量子纠错编码的一个可行方案.  相似文献   

3.
为了避免激光相位的起伏对几何相位逻辑门保真度的影响, 提出一种基于囚禁离子的量子几何相位逻辑门的新方案。该机制是利用一束频率调制的行波激光场作用于两个囚禁离子上实现的。它的优点有:操作简单,仅需一步就能实现。不灵敏于激光场的相位也不需要对囚禁离子进行个别寻址。  相似文献   

4.
高保真度的多离子纠缠和量子逻辑门是离子阱量子计算的基础.在现有的方案中, M?lmer-S?rensen门是比较成熟的实现多离子纠缠和量子逻辑门的实验方案.近年来,还出现了通过设计超快激光脉冲序列,在Lamb-Dicke区域以外实现超快量子纠缠和量子逻辑门的方案.这些方案均借助离子链这一多体量子系统的声子能级来耦合离子之间的自旋状态,并且均通过调制激光脉冲或设计合适的脉冲序列解耦多运动模式,来提高纠缠门的保真度.本文从理论和实验层面分析了这些多体量子纠缠和量子逻辑门操作的关键技术,揭示了离子阱中利用激光场驱动离子链运动态,通过非平衡过程中的非线性相互作用,来实现量子逻辑门的基本物理过程.  相似文献   

5.
郑仕标 《物理》2006,35(7):541-542
利用绝热演化,文章提出一种新的方法以实现量子相位门,这种相位移动既非源于动力学过程,也非源于几何操纵,它来源于暗态本身的演化,基于绝热演化的优点,这种量子逻辑门对实验参量的起伏不敏感,与几何相位门相比,这种相位门更简单,并且保真度可得到进一步提高。文章对这种相位门做一简述。  相似文献   

6.
离子阱系统是当前实现量子计算最为领先的物理系统之一,已经在数十量子比特的规模下实现了保真度达到容错量子计算阈值的量子态制备、测量、通用量子逻辑门等基本量子操作.未来离子阱量子计算的一个重要研究方向,是在保持量子比特高性能的同时,进一步扩展量子比特的数量,最终达到解决实际问题所需的规模.本文介绍当前离子阱量子计算研究中主流的规模化方案,如离子输运方案和离子-光子量子网络方案等,以及各方案中存在的限制因素,进而探讨如二维离子阵列、双重量子比特等新的规模化方案及其前景.  相似文献   

7.
考虑通过光纤连接的两个单模光学腔,每个腔中都束缚有多个二能级原子,原子与腔模集体共振相互作用,但原子之间没有直接的相互作用。在这样的系统中,我们发现,束缚在两个腔中的两团原子之间可以确定性地实现可靠的量子交换门,量子纠缠门和量子控制z门。与单原子方案比较,我们发现,多原子方案使得量子逻辑门的速度增大√N倍。同时,我们还注意到,共振相互作用能够加快量子控制Z门的实现速度。如果计人原子自发辐射和腔损对量子逻辑门的影响,我们发现,量子逻辑门保真度受耗散的影响随着原子数目的增大而减小。此外,在共振相互作用下,原子自发辐射和腔损对控制Z门的影响显著减小。  相似文献   

8.
沈建其  庄飞 《物理学报》2005,54(3):1048-1052
由于绝热条件几何相位量子逻辑门存在非绝热差错与退相干差错这一冲突,因此在拓扑量子计算中需要设计非绝热条件几何相门,以克服这一不足.证明螺旋光纤系统内光子有效哈密顿量恰好是一个Wang Matsumoto型哈密顿量,因此螺旋光纤系统能自动产生非绝热条件几何相移.同时还证明在螺旋光纤方案中,由极化光子与螺旋光纤相互作用哈密顿量所导致的动力学相位为零(这正是拓扑量子计算所要求的),以及在螺旋光纤系统中可以通过控制极化光子初始波矢,从而较容易获得条件初始态.总之,螺旋光纤系统方案能自动满足Wang与Matsumoto的核磁共振方案中为实现非绝热条件几何相移所提出的全部条件与要求. 关键词: 几何相位 螺旋光纤系统 Wang Matsumoto型哈密顿量 拓扑量子计算  相似文献   

9.
为了避免激光相位的起伏对几何相位逻辑门保真度的影响,提出一种基于囚禁离子的量子几何相位逻辑门的新方案.该方案是利用一束频率调制的行波激光场作用于两个囚禁离子上实现的.它的优点有:操作简单,仅需一步就能实现,不灵敏于激光场的相位也不需要对囚禁离子进行个别寻址.  相似文献   

10.
应变锗空穴量子点是实现超大规模量子计算最有前景的平台之一.由于锗空穴不受超精细相互作影响,有着较长的自旋弛豫时间和量子退相干时间,且锗中本征的强旋轨道耦合和空穴载流子的低有效质量,使得全电场操控空穴自旋量子比特得以实现,极大地降低了器件加工难度,增加了量子点的可扩展性.本文介绍了一种使用应变锗异质结制备重叠栅空穴双量子点器件的方法,完成了应变锗异质结性质测量,空穴双量子点器件制作,单量子点输运性质和双量子点输运性质研究,双量子点耦合可研究调节性研究,以及外磁场存在下的漏电流性质研究和泡利自旋阻塞解除机制的研究.这些工作为未来实现高质量自旋量子比特制备和高保真度量子逻辑门操控提供了实验平台和基本参数.  相似文献   

11.
High-fidelity quantum gates are essential for large-scale quantum computation. However, any quantum manipulation will inevitably affected by noises, systematic errors and decoherence effects, which lead to infidelity of a target quantum task. Therefore, implementing high-fidelity, robust and fast quantum gates is highly desired. Here, we propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum computation based on resonant interaction of three-level quantum systems via shortcuts to adiabaticity. In our proposal, the target Hamiltonian to induce noncyclic non-Abelian geometric phases can be inversely engineered with less evolution time and demanding experimentally, leading to high-fidelity quantum gates in a simple setup. Besides, our scheme is readily realizable in physical system currently pursued for implementation of quantum computation. Therefore, our proposal represents a promising way towards fault-tolerant geometric quantum computation.  相似文献   

12.
Nonadiabatic geometric quantum computation protected by dynamical decoupling combines the robustness of nonadiabatic geometric gates and the decoherence-resilience feature of dynamical decoupling. Solid-state systems provide an appealing candidate for the realization of nonadiabatic geometric quantum computation protected dynamical decoupling since the solid-state qubits are easily embedded in electronic circuits and scaled up to large registers. In this paper, we put forward a scheme of nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian, which not only combines the merits of nonadiabatic geometric gates and dynamical decoupling but also can be realized in a number of solid-state systems, such as superconducting circuits and quantum dots.  相似文献   

13.
Geometric phases are robust to local noises and the nonadiabatic ones can reduce the evolution time, thus nonadiabatic geometric gates have strong robustness and can approach high fidelity. However, the advantage of geometric phase has not been fully explored in previous investigations. Here,a scheme is proposed for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths. In the scheme, only geometric phase can be accumulated in a fast way, and thus it not only fully utilizes the local noise resistant property of geometric phase but also reduces the difficulty in experimental realization. Numerical results show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path. Furthermore, it proposes to construct universal quantum gate on superconducting circuits, with the fidelities of single-qubit gate and nontrivial two-qubit gate can achieve 99.97% and 99.87%, respectively. Therefore, these high-fidelity quantum gates are promising for large-scale fault-tolerant quantum computation.  相似文献   

14.
Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being timedependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits’ frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.  相似文献   

15.
We analyze a new scheme for quantum information processing, with superconducting charge qubits coupled through a cavity mode, in which quantum manipulations are insensitive to the state of the cavity. We illustrate how to physically implement universal quantum computation as well as multiqubit entanglement based on unconventional geometric phase shifts in this scalable solid-state system. Some quantum error-correcting codes can also be easily constructed using the same technique. In view of the gate dependence on just global geometric features and the insensitivity to the state of cavity modes, the proposed quantum operations may result in high-fidelity quantum information processing.  相似文献   

16.
嵇英华  蔡十华  乐建新  王资生 《中国物理 B》2010,19(1):10311-010311
A scheme to perfectly preserve an initial qubit state in geometric quantum computation is proposed for a single-qubit geometric quantum gate in a nuclear magnetic resonance system. At first, by adjusting some magnetic field parameters, one can let the dynamic phase be proportional to the geometric phase. Then, by controlling the azimuthal angle in the initial state, we may realize a geometric quantum gate whose fidelity is equal to one under cyclic evolution. This means that the quantum information is no distortion in the process of geometric quantum computation.  相似文献   

17.
Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here, we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin. Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.  相似文献   

18.
《中国物理 B》2021,30(7):70309-070309
Homomorphic encryption has giant advantages in the protection of privacy information. In this paper, we present a new kind of probabilistic quantum homomorphic encryption scheme for the universal quantum circuit evaluation. Firstly,the pre-shared non-maximally entangled states are utilized as auxiliary resources, which lower the requirements of the quantum channel, to correct the errors in non-Clifford gate evaluation. By using the set synthesized by Clifford gates and T gates, it is feasible to perform the arbitrary quantum computation on the encrypted data. Secondly, our scheme is different from the previous scheme described by the quantum homomorphic encryption algorithm. From the perspective of application, a two-party probabilistic quantum homomorphic encryption scheme is proposed. It is clear what the computation and operation that the client and the server need to perform respectively, as well as the permission to access the data. Finally, the security of probabilistic quantum homomorphic encryption scheme is analyzed in detail. It demonstrates that the scheme has favorable security in three aspects, including privacy data, evaluated data and encryption and decryption keys.  相似文献   

19.
超导量子系统被认为是最可能用于实现大规模量子计算、量子信息、以及量子存储等的物理系统之一.本文在一种特别设计的超导电荷比特的基础上,通过微波腔与超导比特的相互作用,探讨了在此系统中实现几何相单门以及非常规几何相两量子门的途径,并讨论了制备多量子比特最大纠缠态的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号