首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population difference between ground states F = 4 and F = 3 is calculated for Cs atoms pumped on the D2 line by a resonant laser beam. The pumping efficiency for Cs atoms in a static magnetic field on two hyperfine transitions (6S1/2 F = 4 → 6P3/2 F′ = 3 and F′ = 4) is calculated for various pump laser intensities. The population difference as a function of the static magnetic field exhibits a dip centered at the zero magnetic field, which corresponds well with the Zeeman coherence between sublevels of the F = 4 state. The full-width at half-maximum (FWHM) of the dip as a function of the pump laser intensity shows abnormal power broadening behavior that differs for different hyperfine transitions. We present experimental results that agree with the theoretical calculations.  相似文献   

2.
3.
The heat capacity of the liquid–liquid mixture isobutyric acid–water has been measured for the first time near and far away from its critical point using an adiabatic calorimeter. The measurements were performed at atmospheric pressure, in the one phase region as a function of three temperatures: (1) T − TC = 0.055 °C, (2) T − TC = 3.055 °C, (3) T − TC = 8.055 °C and of the composition X in acid (IA). The heat capacity Cp decreases rapidly when X increases at the used temperatures. Near the critical composition, Cp is not affected by the correlation of the concentration fluctuations.

The molar excess heat capacity of the system under investigation was analysed along the phase diagram and considered as a structural transformation effect.  相似文献   


4.
Preferred crystal orientation and low electrical resistivity are required for ZrNx films applied in electronic devices. In this paper, effects of N2:(N2+Ar) flow ratio (F(N2)) and substrate temperature on the properties of the films deposited on glass substrate by reactive dc sputtering are investigated. In a wide range of F(N2) (4–24%), the films show fcc NaCl structure. While for F(N2) in the ranges of 5–12, 12–24 and >24%, the films show (1 1 1)/(2 0 0), (1 1 1) only and amorphous structures, respectively. The electrical resistivity increases with F(N2) from 5 to 24%, and can be controlled to some extent by changing the substrate temperature.  相似文献   

5.
The experimental data for the specific heat Cp is analyzed at various temperatures close to the nematic–isotropic liquid (TNI = 180.5 °C) and the solid–nematic (TSN = 168.9 °C) transitions in anisaldazine.

Values of the critical exponent for the specific heat, which describe a λ-transition between nematic and the isotropic liquid, and a jump discontinuity between solid and nematic phases, are deduced for anisaldazine. They are compared with the model predictions.  相似文献   


6.
We analyze the influence of residual two-photon excitation (2PE) in two-color (two-photon) optical beam induced current (2CE-OBIC) generation in wide band gap semiconductor samples. 2CE-OBIC generation is accomplished with two confocal excitation beams of separation angle θ and wavelengths λ1 and λ2 where , λe = hc/Eb, h is the Planck’s constant, c is speed of light in vacuum, and Eb is the energy band gap. Because the conduction band of the sample is a continuum, at least one excitation beam would also contribute an undesirable 2PE-OBIC signal that degrades the signal-to-noise ratio of the measured 2CE-OBIC response and broadens the effective OBIC distribution in the sample particularly when θ ≠ 0 or π. We show that the deleterious effects of crosstalk are reduced by a careful selection of λ1 and λ2 and the relative excitation beam intensities. λ1 and λ2 should be chosen to minimize the ratio of the two-photon absorption coefficients (β1β2) to the 2CE absorption coefficient β12 or at least satisfy the constraint: β1 + β2  β12. Keeping the two excitation intensities equal is beneficial only when β1 = β2. Otherwise, it is advantageous to bias the intensity ratio towards the wavelength with a lower 2PE absorption coefficient.  相似文献   

7.
The superconductivity of ZnO-doped (Bi, Pb)-2223 thick film on the Ni and NiO substrates, which was prepared by the spray deposition technique with cold forging, was investigated by characterizing the critical current density (Jc), the critical temperature (Tc), the orientation factor (f), and the microstructure of the film. The thickness of the thick film prepared by the spray deposition method was approximately 10 μm. The maximum Jc value of (Bi, Pb)-2223 film on NiO substrate was approximately 2200 A/cm2 (Ic = 110 mA) when the film was sintered at 865 °C for 1 h with a cooling rate of 0.5 °C/min from 865 °C to 650 °C; in the case of Ni substrate, a maximum Jc value of approximately 2000 A/cm2 (Ic = 100 mA) was obtained for the (Bi, Pb)-2223 thick film when a cooling rate was 3 °C/min. Such a difference in the Jc values of (Bi, Pb)-2223 thick film on Ni and NiO substrates is attributed to the presence of reaction layer at the (Bi, Pb)-2223 and substrate interface. In addition, the variations in the orientation factor of (Bi, Pb)-2223 thick film on NiO substrate related to those of Jc values. The Jc values of (Bi, Pb)-2223 film on NiO substrate with ZnO doping extremely depended on the amount of ZnO doping and the 0.5 wt% ZnO-doped (Bi, Pb)-2223 thick film deposited on NiO substrate, which was sintered at 835 °C for 1 h in air with a cooling rate of 1 °C/min, showed a Jc value of approximately 1200 A/cm2 (Ic = 60 mA). Thus, it is considered that a small amount of ZnO doping was effective in lowering the sintering temperature of (Bi, Pb)-2223 thick film, resulting the improvement in the intragranular weak bonding or Josephson junction.  相似文献   

8.
Using homo-junction structure and relative thin linear graded InxGa1−xAs as the buffer layer, extended wavelength InGaAs PIN photodetectors with cut-off wavelength of 2.2 and 2.5 μm at room temperature have been grown by using GSMBE, and their performance over a wide temperature range have been extensively investigated. For those 2.2 or 2.5 μm detectors with 100 μm diameter, the typical dark current (VR = 10 mV) and R0A are 57 nA/10.3 Ω cm2 or 67 nA/12.7 Ω cm2 at 290 K, and 84 pA/4.70 kΩ cm2 or 161 pA/3.12 kΩ cm2 at 210 K respectively. The thermal activation energies of the dark current are 0.447 eV or 0.404 eV for 2.2 or 2.5 μm detectors respectively.  相似文献   

9.
We have investigated the microwave response at 45 GHz in an organic superconductor λ-(BEDT-TSF)2GaCl4 with Tc = 4.8 K. We determine the μ0Hc2T phase diagram from microwave loss and find that the superconducting state is in the pure limit (l/ξGL  10). Although the real part of the complex conductivity (=σ1 + iσ2) does not show a coherence peak just below Tc, the London penetration depth completely saturates at low temperatures down to T/Tc = 0.2, which may provide an evidence for a conventional s-wave pairing. In the metallic state below about 50 K, (parallel to the c-axis) deviates downward from , while σ2, which should be zero in a conventional metal, increases exponentially toward Tc. In spite of the fact that the Hagen–Rubens limit is well satisfied as far as the dc conductivity is concerned, a Drude model is unable to explain the large positive σ2. In order to explain such anomalies in the metallic state, we propose a possible existence of so-called a pseudogap near a Fermi level. The anomalous increase of the positive σ2 may be attributed to an appearance of pre-formed electron pairs in the pseudogap state. This appearance can be regarded as a precursor to the superconducting transition. Such a precursory phenomenon has been observed also in the isostructural FeCl4 salt with the anomalous metallic states, which shows a negative σ2 in contrast to the GaCl4 salt. Just the opposite of ground states in between the GaCl4 and FeCl4 salts may result in the contrasting anomalous metallic states with different precursory phenomena with opposite signs of σ2.  相似文献   

10.
Well-crystallized Ba0.5Sr0.5TiO3 thin films with good surface morphology were prepared on MgO(1 0 0) substrates by pulsed laser deposition technique at a deposition temperature of 800 °C under the oxygen pressure of 2 × 10−3 Pa. X-ray diffraction and atomic force microscopy were used to characterize the films. The full width at half maximum of the (0 0 2) Ba0.5Sr0.5TiO3 rocking curve and the root-mean-square surface roughness within the 5 μm × 5 μm area were 0.542° and 0.555 nm, respectively. The nonlinear optical properties of the films were determined by a single beam Z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that Ba0.5Sr0.5TiO3 thin films exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 5.04 × 10−6 cm2/kW and β = 3.59 × 10−6 (m/W), respectively.  相似文献   

11.
We theoretically study the effect of the dielectric background in two-dimensional metallo-dielectric photonic crystals. The metallo-dielectric photonic crystal consists of a square lattice of circular metallic rods embedded into a dielectric background. We calculate the photonic band structure by means of the plane wave method and the frequency-dependent finite-difference time-domain method. The transfer matrix method is used to obtain the reflectivity characteristics. Results show that the band structures shift toward lower frequencies and become flatter when the background dielectric constant increases. In addition, degeneracy can be broken and new gaps can be created in function of the dielectric background. We also found that the relative band gap width Δω/ωg grows with increasing background dielectric constant and widths as large as 42.3% and 13.8% for the second and third band gaps can be achieved for εb = 9. We have investigated the origin of the new gap in these structures by studying the electric-field distribution at the band edges for the first five modes.  相似文献   

12.
The modified Biot–Attenborough (MBA) model for acoustic wave propagation in porous media has been found useful to predict wave properties in cancellous bone. The present study is aimed at applying the MBA model to predict the dependence of phase velocity on porosity in cancellous bone. The MBA model predicts a phase velocity that decreases nonlinearly with porosity. The optimum values for input parameters of the MBA model, such as compressional speed cm of solid bone and phase velocity parameter s2, were determined by comparing the predictions with previously published measurements in human calcaneus and bovine cancellous bone. The value of the phase velocity parameter s2 = 1.23 was obtained by curve fitting to the experimental data for 53 human calcaneus samples only, assuming a compressional speed cm = 2500 m/s of solid bone. The root-mean-square error (RMSE) of the curve fit was 15.3 m/s. The optimized value of s2 for all 75 cancellous bone samples including 22 bovine samples was 1.42 with a value of 55 m/s for the RMSE of the curve fit. The latter fit was obtained by using of a value of cm = 3200 m/s. Although the MBA model relies on the empirical parameters determined from experimental data, it is expected that the model can be usefully employed as a practical tool in the field of clinical ultrasonic bone assessment.  相似文献   

13.
The magneto-optic Cotton-Mouton effect constant C, light refraction index n and density ρ of binary solutions of toluene in carbon tetrachloride, -picoline and β-picoline in 1,4-dioxane have been measured at different concentrations. The results have been used for the calculation of the molar CM constants of the solutions. By extrapolating the values CM = CM(f2) for the concentration f2 → 0, the constant C2M = gasC2M of the dipolar component of the solution has been found, which is interpreted as the Cotton-Mouton gas constant. For all solutions, the reduction factors of the dissolved component have been calculated and their linear dependence on the solution concentration has been found.  相似文献   

14.
Zn1−xMnxS epilayers were grown on GaAs (1 0 0) substrates by hot-wall epitaxy. X-ray diffraction (XRD) patterns revealed that all the epilayers have a zincblende structure. The optical properties were investigated using spectroscopic ellipsometry at 300 K from 3.0 to 8.5 eV. The obtained data were analyzed for determining the critical points of pseudodielectric function spectra, (E) = 1(E) + i2(E), such as E0, E0 + Δ0, and E1, and three E2 (Σ, Δ, Γ) structures at a lower Mn composition range. These critical points were determined by analytical line-shapes fitted to numerically calculated derivatives of their pseudodielectric functions. The observation of new peaks, as well as the shifting and broadening of the critical points of Zn1−xMnxS epilayers, were investigated as a function of Mn composition by ellipsometric measurements for the first time. The characteristics of the peaks changed with increasing Mn composition. In particular, four new peaks were observed between 4.0 and 8.0 eV for Zn1−xMnxS epilayers, and their characteristics were investigated in this study.  相似文献   

15.
We have studied the microscopic properties of the hexagonal ZrNiAl, a model compound for a wide family of intermetallic compounds crystallizing in this type of structure, by using 27Al NMR spectroscopy. We have investigated the lineshape of static and MAS NMR spectra as a function of magnetic field strength (4.7–9.4 T) and temperature (5–300 K). Our data indicate that the 27Al NMR spectra result from a combined effect of quadrupole and anisotropic shift interactions. The 27Al nuclei are in an environment characterized by the quadrupole coupling constant e2qQ/h of 3.3 MHz, asymmetry parameter ηQ of 0.42, isotropic shift δiso of 393 ppm, shift anisotropy δanis = δzz − (δxx + δyy)/2 of 150 ppm, and asymmetry factor ηS of 0.5. They are found to be temperature independent. The spin–lattice relaxation rate measured at 7.05 T is proportional to the temperature with T1T = 135 s K. The mechanisms responsible for observed values of δiso, δanis, T1T, and the enhanced Korringa constant are discussed.  相似文献   

16.
Bi2Te3 films were prepared by thermal evaporation technique. X-ray diffraction analysis for as-deposited and annealed films in vacuum at 150 °C were polycrystalline with rhombohedral structure. The crystallite size is found to increase as the film thickness increases and has values in the range 67–162 nm. The optical constants (the refractive index, n, and absorption index, k) were determined using transmittance and reflectance data in the spectral range 2.5–10 μm for Bi2Te3 films with different thicknesses (25–99.5 nm). Both n and k are independent on the film thickness in the investigated range. It was also found that Bi2Te3 is a high refractive index material (n has values of 4.7–8.8 in the wavelength range 2.5–10 μm). The allowed optical transitions were found to be direct optical transitions with energy gap  eV. The optical conductivities σ1 = ƒ() and σ2 = f() show distinct peaks at about 0.13 and 0.3 eV, respectively. These two peaks can be attributed to optical interband transitions.  相似文献   

17.
考虑包含动理学效应的鱼骨模结构,使用导心轨道程序 ORBIT,在磁面坐标下研究了不同的扰动模 幅度、频率对快离子再分布的影响,并分析了粒子与扰动发生共振的条件。模拟得出,鱼骨模扰动会使快离子在 实空间、相空间中发生再分布,芯部( ψp/ψ w≤0.2 ,ψp 为极向磁通,ψw 为最后一个闭合磁面的磁通)快离子密 度下降约 20%,中间磁面位置上( ψp/ψ w≥0.2,ψp/ψ w≤ 0.6)的快离子密度增加约 7%;通过扫描频率发现,相空间中快 离子的再分布对模式频率敏感,并分析了快离子与鱼骨模扰动共振的条件。  相似文献   

18.
We propose a new design of a chaotic signal generation and cancellation system using an all fiber optic scheme. A system consists of a standard diode laser, a fiber optic micro ring resonator, and an optical add/drop multiplexer. When light from the diode laser is input into the fiber ring resonator, the chaotic signal can be generated by using the selected fiber ring resonator parameters and the diode laser input power. The required signal is obtained in the transmission link via the add/drop device by a specific user at the drop port. Simulation results obtained have shown the potential of application, especially, when the practical ring radius is 10 μm with the optical input power is in the range of the communication standard diode laser, for instance, when the coupling coefficients of the add/drop device are κ1 = 0.01 and κ2 = 0.01–0.9. When the add port of the add/drop device is employed, such a system can also be utilized for the multi user applications.  相似文献   

19.
An experiment has been performed for measuring a nonlinear refractive index that is due to the polarizability difference ΔP between excited (4T2) and ground (4A2) states in a Cr3+:LiSAF crystal at λ = 647 nm. The latter one is responsible for a population lensing effect which has been monitored by using the eclipsing Z-scan technique. We have performed a data analysis that allows to distinguish between thermal and population contributions to the lensing effect. We have found ΔP = 4.6 × 10−25 cm3 which is in a good agreement with our previous measurements with a different technique.  相似文献   

20.
We have investigated in detail the mechanism of infrared emission and upconversion emission of Er3+ in tellurite glass as a function of the dopant concentration. Both the infrared and upconversion emissions are competing processes and the efficiency of infrared emission at 1534 nm is 100% at the lowest Er content (0.5 mol%) and reduces to 50% at higher dopant concentration (>2 mol%). The green upconversion emission at 548 nm is mainly due to the excited state absorption (ESA) from 4I11/2, which populate the 4F7/2 level. In addition to this, the possible energy transfer (ET) through Er3+(4I11/2) + Er3+(4I11/2) → Er3+(4F7/2) + Er3+(4I15/2) can also results in the green emission as is noticed from the concentration dependent efficiency change of the green emission. The fluorescence quenching of green emission with Er concentration may be related with the cross relaxation (CR) process 2H11/2 + 4I15/2 → 4I9/2 + 4I13/2. The red emission is due to the combined effect of the ESA from level 4I13/2 to 4F9/2, the energy transfer process described by Er3+(4I13/2) + Er3+(4I11/2) → Er3+(4F9/2) + Er3+(4I15/2) and the cross relaxation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号