首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
We present an experiment performed to study the behaviour of the dynamic gravitational interaction at laboratory scale. We used as field generator a mass quadrupole rotating in the range of 460 Hz and we detected the acceleration field with the cryogenic gravitational wave antenna Explorer of the Rome group. We report the measurements of this interaction as a function of the distance between the field source and the detector. An upper limit on the parameters of a Yukawa-like potential, modeling an hypotetic deviation from the Newtonian law of gravity, is derived. Received: 14 June 1998 / Published online: 16 September 1998  相似文献   

2.
Recently significant advancements have been made towards the realization of a large spherical gravitational wave detector. Research and development activities have already begun in several countries. We present here the main features and capabilities of a spherical gravitational wave detector. In particular, we discuss the interaction between a spherical antenna and cosmic rays that may require a large detector to be placed underground.  相似文献   

3.
We consider the gravitational effect of quantum wave packets when quantum mechanics, gravity, and thermodynamics are simultaneously considered. Under the assumption of a thermodynamic origin of gravity, we propose a general equation to describe the gravitational effect of quantum wave packets. In the classical limit, this equation agrees with Newton’s law of gravitation. For quantum wave packets, however, it predicts a repulsive gravitational effect. We propose an experimental scheme using superfluid helium to test this repulsive gravitational effect. Our studies show that, with present technology such as superconducting gravimetry and cold atom interferometry, tests of the repulsive gravitational effect for superfluid helium are within experimental reach.  相似文献   

4.
《Physics letters. A》1997,232(5):340-348
A new scheme of gravitational wave antennas is proposed which due to the effect of light pressure behaves analogous to solid state antenna of the same scale. The gravitational signal in this scheme is transformed into the force acting on a mirror. The resulting mirror displacement may be detected using methods standard for the bar antennas. The scheme provides gain in resolution and allows one to beat the standard quantum limit without the use of non-classical pumping.  相似文献   

5.
The gravitational wave antenna OGRAN is installed in the underground laboratory of the Baksan Neutrino Observatory. At the present time, it has a limited sensitivity sufficient only to detect gravitational radiation from sources situated at a distance of about 100 kpc. The calculations presented in this paper demonstrate the increase in the sensitivity by two orders of magnitude with cooling of the acoustical resonator of the antenna to the liquid-nitrogen temperature. The possibility of using the same optical detection scheme as the one under room temperature is discussed. The revised construction of the cryogenic version of the OGRAN antenna is considered. The results of experiments carried out with the pilot model of cryogenic antenna are presented.  相似文献   

6.
The interferometric gravitational wave detectors represent the ultimate evolution of the classical Michelson interferometer. In order to measure the signal produced by the passage of a gravitational wave, they aim to reach unprecedent sensitivities in measuring the relative displacements of the mirrors. One of them, the 3-km-long Virgo gravitational wave antenna, which will be particularly sensitive in the low-frequency range (10–100 Hz), is presently in its commissioning phase. In this paper the various techniques developed in order to reach its target extreme performance are outlined.  相似文献   

7.
We present an orientational quantum interferometer sensitive to gravitational waves that is based on orienting quantum objects like molecules, atoms, or nuclei in space. The detection principle is based on inducing non-sphericity to the corresponding wave functions by light-pulses. In the field of a gravitational wave these objects then possess spectra that depend on their orientation in space. In our measurement scheme we investigate the adiabatic influence of a monochromatic gravitational wave over a quarter gravitational wave period and compare the corresponding frequencies at instances with maximal and vanishing gravitational wave elongation. We therefore explore the effect over a quarter gravitational wave period (or wavelength) and the resulting frequency shift scales with the binding energy of the system times the amplitude of the gravitational wave. In particular, a gravitational wave with amplitude h = 10−23 will induce a frequency shift of the order of 110 μHz for an atom interferometer based on a 91-fold charged uranium ion.  相似文献   

8.
We present the fundamentals of gravitational wave antennas in the high frequency domain (ground based detectors) and in the low frequency domain (space antenna). We then discuss the main technological challenges, the fundamental limits and the present status. To cite this article: J.-Y. Vinet, C. R. Physique 8 (2007).  相似文献   

9.
In this paper we propose a set of generalized London equations which can describe the effects of gravitational waves on a superconducting antenna. We point out that a superconducting antenna with large quality factorQ will behave differently from a normal antenna, especially in the resonant case. The expression of the signal-to-noise ratio for a superconducting antenna is derived.  相似文献   

10.
Resonant gravitational wave detectors with an observation bandwidth of tens of hertz are a reality: the antenna Explorer, operated at CERN by the ROG Collaboration, has been upgraded with a new readout. In this new configuration, it exhibits an unprecedented useful bandwidth: in over 55 Hz about its center operating frequency of 919 Hz the spectral sensitivity is better than 10(-20) Hz(-1/2). We describe the detector and its sensitivity and discuss the foreseeable upgrades to even larger bandwidths.  相似文献   

11.
We calculate the change in energy absorbed and the power spectrum in a coherently driven antenna induced by interaction with gravitational radiation. The coherent driving field prepares the antenna in a correlated state which enhances the sensitivity of the detector as proposed in a recent paper by Weber.  相似文献   

12.
B S Sathyaprakash 《Pramana》2001,56(4):457-475
The new millennium will see the upcoming of several ground-based interferometric gravitational wave antennas. Within the next decade a space-based antenna may also begin to observe the distant Universe. These gravitational wave detectors will together operate as a network taking data continuously for several years, watching the transient and continuous phenomena occurring in the deep cores of astronomical objects and dense environs of the early Universe where gravity was extremely strong and highly nonlinear. The network will listen to the waves from rapidly spinning non-axisymmetric neutron stars, normal modes of black holes, binary black hole inspiral and merger, phase transitions in the early Universe, quantum fluctuations resulting in a characteristic background in the early Universe. The gravitational wave antennas will open a new window to observe the dark Universe unreachable via other channels of astronomical observations.  相似文献   

13.
Models of the coupling of electromagnetic and gravitational fields have been studied extensively for many years. In this paper,we consider the coupling between the Maxwell field and the Weyl tensor of the gravitational field to study how the wavevector of the electromagnetic wave is affected by a plane gravitational wave. We find that the wavevector depends upon the frequency and direction of polarization of the electromagnetic waves, the parameter that couples the Maxwell field and the Weyl tensor, and the angle between the direction of propagation of the electromagnetic wave and the coordinate axis. The results show that this coupling model can be tested by the detection of high-frequency gravitational waves.  相似文献   

14.
A method of enhancing the sensitivity of laser gravitational antennas based on tracking of the velocity of the antenna reflectors instead of conventional tracking of their displacement is considered. This method allows one to overcome the standard quantum detection limit for a weak force. An optical scheme of a gravitational wave detector on the basis of a speed meter is considered. The formulas for the limiting sensitivity of the given scheme taking optical losses into account are obtained. The possibility of realizing the considered measurement method in presently existing laser gravitational antennas is analyzed.  相似文献   

15.
Gravitational lenses could be used to detect gravitational waves, because a gravitational wave affects the travel-time of a light ray. In a gravitational lens, this effect produces time-delays between the different images. Thus the bending of light, which was the first experimental confirmation of Einstein's theory, can be used to search for gravitational waves, which are the most poorly confirmed aspect of that same theory. Applying this method to the gravitational lens 0957+561 gives new upper bounds on the amplitude of low-frequency gravitational waves in the universe, and new limits on the energy-density during an early inflationary phase.This Essay received the First Award from the Gravity Research Foundation, 1990-Ed.  相似文献   

16.
We report the initial results from a search for bursts of gravitational radiation by a network of five cryogenic resonant detectors during 1997 and 1998. This is the first significant search with more than two detectors observing simultaneously. No gravitational wave burst was detected. The false alarm rate was lower than 1 per 10(4) yr when three or more detectors were operating simultaneously. The typical threshold was H approximately 4x10(-21) Hz-1 on the Fourier component at approximately 10(3) Hz of the gravitational wave strain amplitude. New upper limits for amplitude and rate of gravitational wave bursts have been set.  相似文献   

17.
We present the first upper limit on gravitational wave (GW) backgrounds at an unexplored frequency of 0.2 Hz using a torsion-bar antenna (TOBA). A TOBA was proposed to search for low-frequency GWs. We have developed a small-scaled TOBA and successfully found Ω(gw)(f)<4.3×10(17) at 0.2 Hz as demonstration of the TOBA's capabilities, where Ω(gw)(f) is the GW energy density per logarithmic frequency interval in units of the closure density. Our result is the first nonintegrated limit to bridge the gap between the LIGO band (around 100 Hz) and the Cassini band (10(-6)-10(-4) Hz).  相似文献   

18.
Beginning with the stress-energy tensor of an elastic string this paper derives a relativistic string and its form in a parallel transported Fermi frame including its reduction to a Cosserat string in the Newtonian limit. In a Fermi frame gravitational curvature is seen to induce three dominant relative acceleration terms dependent on: position, velocity and position, strain and position, respectively. An example of a string arranged in an axially flowing ring (a lasso) is shown to have a set of natural frequencies that can be parametrically excited by a monochromatic plane gravitational wave. The lasso also exhibits, in common with spinning particles, oscillations about geodesic motion in proportion to spin magnitude and wave amplitude when the spin axis lies in the gravitational wave front.  相似文献   

19.
Summary The antenna pattern is analysed for four widely spaced cryogenic gravitational wave antennas which are expected to begin operating in coincidence during 1987. Using reasonable assumptions for senstivity, the four-antenna pattern is shown to give between 50% and 80% sky coverage for circularly polarized radiation under the minimum-detection criterion of two-way coincidence. One-hundred percent sky coverage can be achieved if one antenna is reoriented, but this is at the expense of reduced probability for 3-way coincidences.  相似文献   

20.
Photon motion in a Michelson interferometer is re-analyzed in terms of both geometrical optics and wave optics.The classical paths of the photons in the background of a gravitational wave are derived from the Fermat principle,which is the same as the null geodesics in general relativity.The deformed Maxwell equations and the wave equations of electric fields in the background of a gravitational wave are presented in a flat-space approximation.Both methods show that even the envelope of the response of an interferometer depends on the frequency of a gravitational wave,but it is almost independent of the frequency of the mirror's vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号