首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Pt/Pd anode catalysts for direct formic acid polymer electrolyte membrane fuel cells outperform both Pt and Pd in steady-state electrooxidation trials. Temperature-programmed desorption (TPD) experiments in ultra-high vacuum (UHV) were performed with 1 L formic acid on clean Pt(1 1 0), 0.6 monolayers Pd/Pt(1 1 0), and multilayer Pd/Pt(1 1 0) to gain a better understanding of the effect of Pd additions to a Pt catalyst. Both dehydration and dehydrogenation of formic acid occur on all three surfaces. As Pd coverage increases, the activation barrier for formate decomposition to CO2 decreases, but the effect does not explain the unusual activity of Pt/Pd in the electrochemical environment.  相似文献   

2.
In this research, the effect of Ni, Pd and Ni-Pd catalysts have studied on morphology and structure of synthesized multi-wall carbon nanotubes (MWCNTs). Initially, thin films of Ni (with two thicknesses of 10 and 20 nm), Pd/Ni (5/10 nm) and Pd (10 nm) were deposited as catalysts on SiO2 (60 nm)/Si(1 0 0) substrates, using dc magnetron sputtering technique. The deposited films were annealed at 900 °C in ammonia environment for 45 min, in order to obtain nano-structured catalyst on the surface. Using scanning electron microscopy (SEM), the average size of Ni nano-islands (synthesized by the 10 and 20 nm Ni films), Pd and Ni-Pd nano-islands were measured about 55, 110, 45 and 50 nm, respectively. According to X-ray photoelectron spectroscopy analysis (XPS), the ratio of Ni/Pd on the surface was about 3 for the bilayer sample. The CNTs were synthesized on the nano-island catalysts at 940 °C in CH4 ambient using a thermal chemical vapor deposition method. The results revealed that average diameter of the CNTs were about 70, 110, 120 nm for Ni, Ni-Pd and Pd catalysts, respectively. Raman spectra of the MWCNTs showed that intensity ratio of two main peaks located in the range of 1550-1600 and 1250-1450 cm−1 (as a quality factor for the CNTs) for Ni, Pd and Ni-Pd catalysts were 1.42, 0.91 and 0.85, respectively. Therefore, based on our data analysis, although addition of Pd to Ni catalyst caused a considerable reduction in the quality of the grown MWCNTs as compared to the pure Ni catalyst, but it resulted in an enhancement in the methane decomposition rate. For the pure Pd catalyst samples, both a slow methane decomposition rate as compared with Ni-Pd catalyst samples and a poor quality of CNTs were observed as compared with the Ni catalyst, under similar experimental conditions.  相似文献   

3.
The formic acid and methanol oxidation reaction are studied on Pt(1 1 1) modified by a pseudomorphic Pd monolayer (denoted hereafter as the Pt(1 1 1)-Pd1 ML system) in 0.1 M HClO4 solution. The results are compared to the bare Pt(1 1 1) surface. The nature of adsorbed intermediates (COad) and the electrocatalytic properties (the onset of CO2 formation) were studied by FTIR spectroscopy. The results show that Pd has a unique catalytic activity for HCOOH oxidation, with Pd surface atoms being about four times more active than Pt surface atoms at 0.4 V. FTIR spectra reveal that on Pt atoms adsorbed CO is produced from dehydration of HCOOH, whereas no CO adsorbed on Pd can be detected although a high production rate of CO2 is observed at low potentials. This indicates that the reaction can proceed on Pd at low potentials without the typical “poison” formation. In contrast to its high activity for formic acid oxidation, the Pd film is completely inactive for methanol oxidation. The FTIR spectra show that neither adsorbed CO is formed on the Pd sites nor significant amounts of CO2 are produced during the electrooxidation of methanol.  相似文献   

4.
This paper repots a highly catalytic palladium nanoparticle catalyst dispersed on the purified multi-walled carbon nanotubes (P-MWCNTs) for the electrooxidation of formic acid, in which sodium oxalate is employed as both a dispersant and a coordination agent. The nanostructured catalysts have been characterized by X-ray diffraction technique and transmission electron microscopy. It is found that the as-prepared face-centered cubic crystal Pd nanoparticles are uniformly dispersed on the surface of MWCNTs with an average particle size of 5.6 nm. Fourier transform infrared spectroscopy and thermogravimetric analysis revel that sodium oxalate is a tractable ligand with the aid of a suitable solution. Cyclic voltammetry and chronoamperometry tests demonstrate that the obtained Pd/P-MWCNT catalyst from typical experiment has better catalytic activity and stability for formic acid electrooxidation than acid-oxidation treatment MWCNT (AO-MWCNT)-supported Pd catalyst from the control experiment. Therefore, the as-prepared Pd/P-MWCNTs would be a potential candidate as an anode electrocatalyst in direct formic acid fuel cells.  相似文献   

5.
A Pd/WO3/C nanocomposite with 3-aminopropyltrimethoxysilane (APTMS)-functionalized tungsten oxide nanosheets (Pd/WO3/C-APTMS) was synthesized and applied as the efficient anode catalyst for direct formic acid fuel cells (DFAFCs). The mechanism for synthesizing the nanocomposite is as follows: initially, [PdCl4]2? was assembled onto the tungsten oxide nanosheets modified with APTMS. Following this, Pd nanoparticles were reduced via traditional impregnation reduction of [PdCl4]2? with NaBH4. The transmission electron microscope (TEM) images revealed that the Pd nanoparticles were uniformly dispersed on WO3 nanosheets and were approximately 2.7 nm in size. The electrochemical test results showed that enhanced electrocatalytic activity for the formic acid oxidation reaction (FAOR) was obtained on the Pd/WO3/C catalyst compared with Pd/C. The higher electrocatalytic activity might be attributed to the uniform distribution of Pd with smaller particles. Furthermore, it is likely that the improvement in catalytic stability for the Pd/WO3/C catalyst is due to the hydrogen spillover effect of WO3 particles. These results indicate that this novel Pd/WO3/C-APTMS nanocomposite exhibits promising potential for use as an anode electrocatalyst in DFAFCs.  相似文献   

6.
A highly dispersed and ultrafine carbon supported Pd nanoparticles (Pd/C) catalyst is synthesized by a facile homogeneous precipitation-reduction reaction method. Under the appropriate pH conditions, [PdCl4]2− species in PdCl2 solution are slowly transformed into the insoluble palladium oxide hydrate (PdO·H2O) precipitation by heat treatment due to a slow hydrolysis reaction, which results in the generation of carbon supported PdO·H2O nanoparticles (PdO·H2O/C) sample with the high dispersion and small particle size. Consequently, a highly dispersed and ultrafine Pd/C catalyst can be synthesized by PdO·H2O → Pd0 in situ reduction reaction path in the presence of NaBH4. As a result, the resulting Pd/C catalyst possesses a significantly electrocatalytic performance for formic acid electrooxidation, which is attributed to the uniformly sized and highly dispersed nanostructure.  相似文献   

7.
The new Pd/WO3-CNTs catalysts are prepared for formic acid electrooxidation in direct formic acid fuel cells (DFAFCs). According to XRD, TEM, and HRTEM results, WO3 particles are covered or overlapped with Pd particles, which have a uniform and narrow size distribution due to the highly dispersion of WO3-CNTs. The electrochemical results show significantly enhanced electrocatalytic performances for formic acid oxidation on Pd/WO3-CNTs catalysts, especially its dramatically improved stability and excellent tolerance to CO poisoning, which is mainly ascribed to the interaction between Pd and WO3. Therefore, Pd/WO3-CNTs catalysts show the great potential as less expensive and more efficient electrocatalyst for DFAFCs. Additionally, the kinetic parameters such as the charge transfer parameter and the diffusion coefficient of formic acid electrooxidation on 20 %Pd/20 %WO3-CNTs were obtained.
The new Pd/WO3-CNTs catalysts are prepared and studied in the oxidation of formic acid, and the significantly enhanced electrocatalytic performances, especially its dramatically improved stability and excellent tolerance to CO poisoning show great potential as less expensive and more efficient electrocatalyst for the direct formic acid fuel cells.  相似文献   

8.
Nanocrystalline ZnFe2O4 powder was prepared by the auto-combustion method using citric acid, acetic acid, carbamide and acrylic acid as fuel additives. Pure spinel zinc ferrite with the crystallite size of about 15 nm can be obtained by using acrylic acid as fuel additive. Samples prepared using other fuel additives contain ZnO impurities. In order to eliminate ZnO impurities, the sample prepared with citric acid as fuel additive was annealed at different temperatures up to 1000 °C in air and in argon. Annealed powders have pure ZnFe2O4 phase when annealing temperature is higher than 650 °C in air. Sample annealed at 650 °C in air is paramagnetic. However, annealed powders become a mixture of Fe3O4 and FeO after annealing at 1000 °C in argon atmosphere due to Zn volatility and the reduction reaction.  相似文献   

9.
A direct carbon fuel cell offers a high efficiency alternative to traditional coal fired electrical power plants. In this paper, the electrochemical performance of electrolyte supported button cells with Gd2O3-doped CeO2 (CGO) electrolyte is reported over the temperature range 600 to 800 °C with solid carbon as a fuel and He/CO2 as the purge gases in the fuel chamber. The electrochemical characterisation of the cells was carried out by the Galvanostatic Current Interruption (GCI) technique and measuring V-I and P-I curves. Power densities over 50 mWcm-2 have been demonstrated using carbon black as the fuel. Results indicate that at low temperatures around 600 °C, the direct electrochemical oxidation of carbon takes place. However, at higher temperatures (800 °C) both direct electrochemical oxidation and the reverse Boudouard reaction take place leading to some loss in fuel cell thermodynamic efficiency and reduced fuel utilisation due to the in-situ production of CO. In order to avoid reverse Boudouard reaction whilst maximising performance, an operating temperature of around 700 °C appears optimal. Further, the electrochemical performance of fuel cells has been compared for graphite and carbon black fuels. It was found that graphitic carbon fuel is electrochemically less reactive than relatively amorphous carbon black fuel in the DCFC when tested under similar conditions.  相似文献   

10.
Novel egg-shell structured monometallic Pd/SiO2 and bimetallic Ca-Pd/SiO2 catalysts were prepared by an impregnation method using porous hollow silica (PHS) as the support and PdCl2 and Ca(NO3)2·4H2O as the precursors. It was found from transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) that Pd was loaded on PHS with a particle size of 5-12 nm in Pd/SiO2 samples and the Pd particle size in Ca-Pd/SiO2 was smaller than that in Pd/SiO2 since Ca could prevent Pd particles from aggregating. X-ray photoelectron spectroscopy (XPS) analyses exhibited that Pd 3d5/2 binding energies of Pd/SiO2 and Ca-Pd/SiO2 were 0.2 and 0.9 eV lower than that of bulk Pd, respectively, as a result of the shift of the electron cloud from Pd to oxygen in Pd/SiO2 and to both oxygen and Ca in Ca-Pd/SiO2. The activity of Ca-Pd/SiO2 egg-shell catalyst for CO hydrogenation and the selectivity to methanol, with a value of 36.50 mmolCO mol−1Pd s−1 and 100%, respectively, were much higher than those of the catalysts prepared with traditional silica gel as the support, owing to the porous core-shell structure of the PHS support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号