首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Wear resistance of reactive plasma sprayed TiB2-TiC0.3N0.7 based composite coatings and the as-sprayed coating with laser surface treatment was investigated using plate-on-plate tests. Wear tests were performed at different normal loads and sliding speeds under dry sliding conditions in air. The surface morphologies of counterparts against as-sprayed and laser remelted coatings were investigated. The microstructure and chemical composition of wear debris and coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. The results show that the wear resistance of the laser remelted coating is improved significantly due to their increased microhardness and reduced flaws. The primary wear mechanism of the remelted coating is oxidation wear and its minor wear mechanisms are grain abrasion and fatigue failure during the course of wear test. In contrast, the primary wear mechanism of the as-sprayed coating is grain abrasion at the low sliding speed (370 rpm) and fatigue failure at the high sliding speed (549 rpm). The oxidation wear mechanism is a minor contributor for the as-sprayed coating.  相似文献   

2.
Materials’ surface service property could be enhanced by transition metal nitride hard coatings due to their high hardness, wear and high temperature oxidation resistance, but the higher friction coefficient (0.4-0.9) of which aroused terrible abrasion. In this work, quinternary (Ti,Al,Si,C)N hard coating 3-4 μm was synthesized at 300 °C using plasma enhanced magnetron sputtering system. It was found that the coating's columnar crystals structure was restrained obviously with the increase of C content and a non-columnar crystals growth mode was indicated at the C content of 33.5 at.%. Both the XRD and TEM showed that the (Ti,Al,Si,C)N hard coatings had unique nanocomposite structures composed of nanocrystalline and amorphous nc-(Ti,Al)(C,N)/nc-AlN/a-Si3N4/a-Si/a-C. However, the coatings were still super hard with the highest hardness of 41 GPa in spite of the carbon incorporation. That a-C could facilitate the graphitization process during the friction process which could improve the coating's tribological performance. Therefore, that nanocomposite (Ti,Al,Si,C)N coatings with higher hardness (>36 GPa) and a lower friction coefficient (<0.2) could be synthesized and enhance the tribological performance and surface properties profoundly.  相似文献   

3.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

4.
Ni-SiC nanocomposite coatings were produced by electrodeposition from a nickel sulfate bath containing SiC nanoparticles with an average particle size of 30 nm. The characteristics of the coatings were assessed by scanning electron microscopy and microhardness test. The friction and wear performance of Ni-SiC nanocomposite coatings and Ni film were comparatively investigated sliding against Si3N4 ceramic balls under non-lubricated conditions. The results indicated that compared to Ni film, Ni-SiC nanocomposite coating exhibited enhanced microhardness and wear resistance. The effect of SiC nanoparticles on the friction and wear resistance is discussed in detail.  相似文献   

5.
The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.  相似文献   

6.
Wear resistant Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings with a microstructure consisting of Ti2Ni3Si primary dendrites and interdendritic Ti2Ni3Si/Ni3Ti eutectic were fabricated on a substrate of 0.2% C plain carbon steel by a laser cladding process with Ti-Ni-Si alloy powders. The Ti2Ni3Si/Ni3Ti coatings have excellent wear resistance and a low coefficient of friction under metallic dry sliding wear test conditions with hardened 0.45% C carbon steel as the silide-mating counterpart. The excellent tribological properties of the coating are attributed to the high hardness, strong covalent-dominant atomic bonds of the ternary metal silicide Ti2Ni3Si and to the high yield strength and strong yield anomaly of the intermetallic compound Ni3Ti. PACS 81.15.Fg; 81.40.Pq; 68.35.Gy; 62.20.Qp  相似文献   

7.
In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr3C2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr3C2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm × 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr3C2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr3C2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr7C3, TiC and both continuous and dense Al2O3, Cr2O3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials.  相似文献   

8.
The surface microstructures of 6061 Al-Mg-Si alloy coated with laser surface alloyed (LSA) Ni-Cr-B-Si powder and their sliding wear performance have been investigated. Experimental results show that there are three regions, as grayish region (G.R.), dark region (D.R.) and bright region (B.R.), in the pool. The Al3Ni and Al3Ni2 compounds appear in the G.R. and D.R., respectively. The Al-Ni-Cr amorphous structure can be observed in the B.R. The hardness of the LSA specimens is much higher than the Al-matrix. Compared with the Al-matrix, the LSA specimens have excellent sliding wear performance. They have lower friction coefficient and wear rate. The critical temperature of sliding wear resistance of LSA specimen is higher than that of Al-matrix by about 50 °C. The stress relief during thermal treatment will slightly reduce the hardness and the wear resistance of LSA specimens, especially at testing temperature >200 °C.  相似文献   

9.
TiCu2Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu2Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu2Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu2Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.  相似文献   

10.
Ni-Co/nano-Al2O3 (Ni-Co/Al2O3) composite coatings were prepared under pulse reversal current (PRC) and direct current (dc) methods respectively. The microstructure of coatings was characterized by means of XRD, SEM and TEM. Both the Ni-Co alloy and composite coatings exhibit single phase of Ni matrix with face-centered cubic (fcc) crystal structure, and the crystal orientation of the Ni-Co/Al2O3 composite coating was transformed from crystal face (2 0 0) to (1 1 1) compared with alloy coatings. The hardness, anti-wear property and macro-residual stress were also investigated. The results showed that the microstructure and performance of the coatings were greatly affected by Al2O3 content and the electrodeposition methods. With the increasing of Al2O3 content, the hardness and wear resistance of the composite coatings enhanced. The PRC composite coatings exhibited compact surface, high hardness, better wear resistance and lower macro-residual stress compared with that of the dc composite coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号