首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.  相似文献   

2.
Electron energy loss spectra (ELS) have been obtained from polycrystalline Cr and Cr2O3 before and after surface reduction by 2 keV Ar+ bombardment. The primary electron energy used in the ELS measurements was systematically varied from 100 to 1150 eV in order to distinguish surface versus bulk loss processes. Two predominant loss features in the ELS spectra obtained from Cr metal at 9.0 and 23.0 eV are assigned to the surface and bulk plasmon excitations, respectively, and a number of other features arising from single electron transitions from both the bulk and surface Cr 3d bands to higher-lying states in the conduction band are also present. The ELS spectra obtained from Cr2O3 exhibit features that originate from both interband transitions and charge-transfer transitions between the Cr and O ions as well as the bulk plasmon at 24.4 eV. The ELS feature at 4.0 eV arises from a charge-transfer transition between the oxygen and chromium ions in the two surface layers beneath the chemisorbed oxygen layer, and the ELS feature at 9.8 eV arises from a similar transition involving the chemisorbed oxygen atoms. The intensity of the ELS peak at 9.8 eV decreases after Ar+ sputtering due to the removal of chemisorbed oxygen atoms. Sputtering also increases the number of Cr2+ states on the surface, which in turn increases the intensity of the 4.0 eV feature. Furthermore, the ELS spectra obtained from the sputtered Cr2O3 surface exhibit features characteristic of both Cr0 and Cr2O3, indicating that Ar+ sputtering reduces Cr2O3. The fact that neither the surface- nor the bulk-plasmon features of Cr0 can be observed in the ELS spectra obtained from sputtered Cr2O3 while the loss features due to Cr0 interband transitions are clearly present indicates that Cr0 atoms form small clusters lacking a bulk metallic nature during Ar+ bombardment of Cr2O3.  相似文献   

3.
The doping effects of 3d transition metals on the magnetic properties of Os1 − xCrxAl2 are studied by first-principles calculations. The Os1 − xCrxAl2 alloys have high spin-polarizations at the Fermi level with the Cr concentration in the range of 0.0<x?0.625. At higher Cr concentration, the ferromagnetic phase transforms into a ferrimagnetic metallic phase.  相似文献   

4.
The electronic states of the Cr overlayers on TiO2(0 0 1) surfaces have been investigated using angle-resolved and resonant photoemission spectroscopy with synchrotron radiation. At lower coverages, Cr deposition on TiO2(0 0 1) creates two well separated in-gap emissions due to the formation of surface Ti3+ (3d1) ions and Cr3+ (3d3) ions. At higher coverages, the in-gap emission is developed into the 2-peak-structure emission of Cr 3d character. The corresponding state is considered to be of metallic nature from the viewpoint of the high ability of oxygen adsorption, but has no Fermi edge, indicating a possibility of forming small Cr clusters on TiO2(0 0 1) at this stage.  相似文献   

5.
A series of Cr-doped ZnO micro-rod arrays were fabricated by a spray pyrolysis method. X-ray diffraction patterns of the samples showed that the undoped and Cr-doped ZnO microrods exhibit hexagonal crystal structure. Surface morphology analysis of the samples has revealed that pure ZnO sample has a hexagonal microrod morphology. From X-ray photoelectron spectroscopy studies, the Cr 2p3/2 binding energy is found to be 577.3 eV indicating that the electron binding energy of the Cr in ZnO is almost the same as the binding energy of Cr3+ states in Cr2O3. The optical band gap Eg decreases slightly from 3.26 to 3.15 eV with the increase of actual Cr molar fraction from x = 0.00 to 0.046 in ZnO. Photoluminescence studies at 10 K show that the incorporation of chromium leads to a relative increase of deep level band intensity. It was also observed that Cr doped samples clearly showed ferromagnetic behavior; however, 2.5 at.% Cr doped ZnO showed remnant magnetization higher than that of 1.1 at.% and 4.6 at.% Cr doped samples, while 4.6 at.% Cr doped ZnO samples had a coercive field higher than the other dopings.  相似文献   

6.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

7.
In this work, we report on the effect of Cr incorporation on the microstructural and optical properties of TiO2:Cr thin films deposited by the RF-magnetron sputtering method. The structural, morphological, chemical bonding and optoelectronic properties of the sputter-deposited TiO2:Cr films were systematically investigated, as a function the incorporated Cr content, by means of various techniques including X-ray diffraction (XRD), atomic force microscopy (AFM), Fourier-Transform Infra-Red (FTIR) absorption, X-ray Photoelectron Spectroscopy (XPS) and ellipsometry. The Cr incorporation into the TiO2 films was controlled by adjusting the RF power (PCr) on the Cr target during the co-sputtering process of TiO2 and Cr. We were thus able to demonstrate that by varying PCr from 8 W to 150 W, the Cr content of the TiO2:Cr films can be fairly controlled from ∼2 at.% to ∼18 at.% and their associated bandgap engineered from 3.3 eV to 1.5 eV. The room-temperature deposited TiO2:Cr are mainly amorphous with the presence of some TiO2 nanocrystallites, and their density increases as their Cr content is increased. The Cr inclusions were found to coexist under both metallic and oxidized forms in the films. By subjecting the TiO2:Cr films to post-annealing treatment (at 550 °C), their crystalline structure was found to be sensitive to their Cr content. Indeed, an anatase-to-rutile phase transformation has been pointed out to occur at a Cr content of ∼7 at.%. Likewise, the Cr-content dependence of the bandgap of annealed TiO2:Cr films undergoes a transition around the 7 at.% of Cr. Our results demonstrate the ability to control the Cr-content of TiO2:Cr films, which leads to tune their optoelectronic properties, such as bandgap or optical absorption edge.  相似文献   

8.
Amorphous Ge1−xCrx thin films are deposited on (1 0 0)Si by using a thermal evaporator. Amorphous phase is obtained when Cr concentration is lower than 30.7 at%. The electrical resistivities are 1.89×10−3–0.96×102 Ω cm at 300 K, and decrease with Cr concentration. The Ge1−xCrx thin films are p-type. The hole concentrations are 5×1016–7×1021 cm−3 at 300 K, and increase with Cr concentration. Magnetizations are 7.60–1.57 emu/cm3 at 5 K in the applied field of 2 T. The magnetizations decrease with Cr concentration and temperature. Magnetization characteristics show that the Ge1−xCrx thin films are paramagnetic.  相似文献   

9.
Electron spin resonance spectra of chromia-yttria solid solutions have been studied at room temperature for Cr concentrations between 0.20 and 2.00 mol%. Isolated Cr3+ ions in sites with two different symmetries were observed, as well as well as Cr3+ ions coupled by the exchange interaction. The relative concentration of isolated to coupled Cr3+ ions decreases with increasing chromium concentration. The results are consistent with the assumption that the chromium ions occupy preferentially the C2 symmetry sites. A theoretical calculation based on this model yields an effective range of the exchange interaction between Cr3+ ions of 0.64 nm, of the same order as that of Cr3+ ions in MgO.  相似文献   

10.
CrNx films were deposited on stainless steel and Si (1 1 1) substrates via medium frequency magnetron sputtering in a N2 + Ar mixed atmosphere. The influence of N2 content on the deposition rate, composition, microstructure, mechanical and tribological properties of the as-deposited films was investigated by means of the X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), nanoindentation and tribometer testing. It was found that the N atomic concentration increased and the phase transformed from a mixture of Cr2N + Cr(N) to single-phase Cr2N, and then Cr2N + CrN to pure CrN phase with the increase of N2 content. The Cr 2p3/2 and N 1s of XPS spectra also confirmed the evolution of phase. Accordingly, all films exhibited a typical columnar structure which lies in the zone T of Thornton Model. The mixed Cr2N and Cr(N) phases showed low hardness and high friction coefficient. Cr2N possessed higher hardness than CrN while CrN exhibited lower friction coefficient.  相似文献   

11.
Valence-band and conduction-band the electronic structure of the CrS (δ=0) and Cr5S6 (δ=0.17) has been investigated by means of photoemission and inverse-photoemission spectroscopies. The bandwidth of the valence bands of Cr5S6 (8.5 eV) is wider than that of CrS (8.1 eV), though the Cr 3d partial density of states evaluated from the Cr 3p-3d resonant photoemission spectroscopy is almost unchanged between the two compounds concerning shapes as well as binding energies. The Cr 3d (t2g) exchange splitting energies of CrS and Cr5S6 are determined to be 3.9 and 3.3 eV, respectively.  相似文献   

12.
To study the ion sputtering rates of W-, Ti- and Cr-carbides, trilayer structures comprising C-graphite (59 nm)/WC (50 nm)/W (38 nm), C-graphite (56 nm)/TiC (40 nm)/Ti (34 nm) and C-graphite (46 nm)/C3C2 (60 nm)/Cr (69 nm) with a tolerance ±2% were sputter deposited onto smooth silicon substrates. Their precise structural and compositional characterization by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) revealed that the WC and Cr3C2 layers were amorphous, while the TiC layer had a polycrystalline structure. The ion sputtering rates of all three carbides, amorphous carbon and polycrystalline Cr, Ti and W layers were determined by means of Auger electron spectroscopy depth profiling as a function of the angle of incidence of two symmetrically inclined 1 keV Ar+ ion beams in the range between 22° and 82°. The sputtering rates were calculated from the known thicknesses of the layers and the sputtering times necessary to remove the individual layers. It was found that the sputtering rates of carbides, C-graphite and metals were strongly angle dependent. For the carbides in the range between 36° and 62° the highest ion sputtering rate was found for Cr3C2 and the lowest for TiC, while the values of the sputtering rates for WC were intermediate. The normalized sputtering yields calculated from the experimentally obtained data for all three carbides followed the trend of theoretical results obtained by calculation of the transport of ions in solids by the SRIM code. The sputtering yields are also presented in terms of atoms/ion. Our experimental data for two ion incidence angles of 22° and 49° and reported values of other authors for C-graphite and metals are mainly inside the estimated error of about ±20%. The influence of the ion-induced surface topography on the measured sputtering yields was estimated from the atomic force microscope (AFM) measurements at the intermediate points of the corresponding layers on the crater walls formed during depth profiling.  相似文献   

13.
Nano-structured TiO2/carbon clusters/Cr2O3 composite material has been successfully obtained by the microwave treatment of a TiO(acac)/Cr(acac)3/epoxy resin complex. The compositions of the composite materials were determined using ICP, elemental analysis and surface characterization by SEM-EDX, TEM and XRD. ESR spectral examinations suggest the possibility of an electron transfer in the process of TiO2 → carbon clusters → Cr2O3 with an oxidation site at TiO2 particles and a reduction site at Cr2O3 particles. The preliminary experimental results show that the calcined materials could decompose methylene blue under visible-light irradiation.  相似文献   

14.
Low-temperature neutron diffraction measurements were carried out on a powder sample of the compound La0.75Sr0.25CrO3 in order to elucidate its magnetic structure. Rietveld analysis of the neutron diffraction data, as a function of temperature, showed that it possesses a G-type antiferromagnetic alignment of Cr spins at all temperatures below 300 K. Down to the lowest achievable temperature, viz. 17 K, the Cr site moments were found to be the weighted average of the 75% Cr3+ and 25% Cr4+ spin-only ionic moments. At 17 K, the Cr site moment was 2.71(5) μB/Cr ion. There is no observable change in the Cr–O bond lengths as a function of temperature. The tilt angles of the CrO6 octahedra marginally increase with decreasing temperature.  相似文献   

15.
The formation of chromium carbide-based hard-coatings on steels using a 90°-bend filtered cathodic vacuum arc (FCVA) has extensive industrial applications; such coatings are free of macroparticles and exhibit excellent characteristics. In this investigation, a working pressure of C2H2/Ar was adopted to synthesize amorphous chromium carbide film (a-C:Cr) and crystalline chromium carbide film (cryst-Cr3C2) from a Cr target (99.95%) at 500 °C under a substrate voltage of −50 V. The corrosion behavior of a-C:Cr coated on steel (a-C:Cr/steel) and cryst-Cr3C2 coated on steel (cryst-Cr3C2/steel) were compared in terms of open-circuit potentials (OCP) and polarization resistance (Rp) in an aerated 3.5 wt% NaCl aqueous solution, as determined by electrochemical impedance spectroscopy (EIS). The XRD results indicated that the transformation of a-C:Cr to cryst-Cr3C2 is distinct as the working pressure declines from 1.2 × 10−2 to 2.9 × 10−3 Torr. The OCP of a-C:Cr/steel and cryst-Cr3C2/steel resemble each other and both assembly are nobler than uncoated steel. The Rp of the coatings exceeds that of the uncoated steel. The SEM observation and the EIS results demonstrate that the cryst-Cr3C2/steel more effectively isolates the defects than dose a-C:Cr/steel.  相似文献   

16.
The microstructure and magnetic properties of FePt films grown on Cr and CrW underlayers were investigated. The FePt films that deposited on Cr underlayer show (2 0 0) orientation and low coercivity because of the diffusion between FePt and Cr underlayer. The misfit between FePt magnetic layer and underlayer increases by small addition of W element in Cr underlayer or using a thin Mo intermediate layer, which is favorable for the formation of (0 0 1) orientation and the transformation of FePt from fcc to fct phase. A good FePt (0 0 1) texture was obtained in the films with Cr85W15 underlayer with substrate temperature of 400 °C. The FePt films deposited on Mo/Cr underlayer exhibit larger coercivity than that of the films grown on Pt/Cr85W15 because 5 nm Mo intermediate layer depressed the diffusion of Cr into magnetic layer.  相似文献   

17.
The atomic arrangement and distribution of oxides (Cr2O3, NiCr2O4 and NiO) on the sprayed-NiCoCrAlY coating after oxidation are analyzed. The formation and the growth model of Ni-Cr oxide phases are discussed according to the matching relationship between atoms. The outline character and a scale of spinel NiCr2O4 are discussed. The results show that Cr atoms can form two close-packed arrangements in the crystal plane of Cr2O3 perpendicular to 〈0 0 1〉 orientation. The atomic spacing in the first arrangement corresponds to double that of Ni/Ni3Al in {1 1 1} crystal face. This suggests that Ni/Ni3Al is the substrate for Cr2O3 to grow along 〈0 0 1〉 direction. The lattice mismatch between Cr2O3 and Ni/Ni3Al is less than that of Al2O3, which indicates that Cr2O3 is easier to form than Al2O3 during the oxidation process. The atomic spacing in another close-packed arrangement of Cr2O3 perpendicular to 〈0 0 1〉 orientation is approximately equal to that of Ni or Cr in the plane of NiCr2O4 and NiO perpendicular to 〈1 1 1〉 orientation. So Cr2O3 can be the substrate for NiCr2O4 and NiO to grow in the 〈0 0 1〉 direction. NiCr2O4 and NiO can grow directly along the 〈1 1 1〉 orientation on each other. NiCr2O4 can grow outward in the planes of Cr2O3 perpendicular to 〈0 0 1〉 and grow inward along 〈1 1 1〉 orientation of NiO.  相似文献   

18.
K.L. Man  M.S. Altman 《Surface science》2006,600(5):1060-1070
The growth and oxidation of Cr films on the W(1 0 0) surface have been studied with low energy electron microscopy (LEEM) and diffraction (LEED). Cr grows in a Stranski-Krastanov (SK) mode above about 550 K and in a kinetically limited layer-by-layer mode at lower temperature. Stress relief in the highly strained pseudomorphic (ps) Cr film appears to be achieved by the formation of (4 × 4) periodic inclusions during the growth of the third layer between 575 and 630 K and by growth morphological instabilities of the third layer at higher temperature. Kinetic or stress-induced roughening is observed at lower temperature. In the SK regime, three-dimensional (3D) Cr islands nucleate after the growth of three Cr layers. 3D island nucleation triggers dewetting of one layer from the surrounding Cr film. Thus, two ps Cr layers are thermodynamically stable. However, one and two layer ps Cr films are unstable during oxidation. 3D clusters, that produce complex diffraction features and are believed to be Cr2O3, are formed during oxidation of one Cr layer at elevated temperature, T ? 790 K. The single layer Cr film remains intact during oxidation at T ? 630 K. 3D bulk Cr clusters are formed predominantly during oxidation of two ps Cr layers.  相似文献   

19.
The Cr-doped zinc oxide (Zn0.97Cr0.03O) nanoparticles were successfully synthesized by sol-gel method. The relationship between the annealing temperature (400 °C, 450 °C, 500 °C and 600 °C) and the structure, magnetic properties and the optical characteristics of the produced samples was studied. The results indicate that Cr (Cr3+) ions at least partially substitute Zn (Zn2+) ions successfully. Energy dispersive spectroscopy (EDS) measurement showed the existence of Cr ion in the Cr-doped ZnO. The samples sintered in air under the temperature of 450 °C had single wurtzite ZnO structure with prominent ferromagnetism at room temperature, while in samples sintered in air at 500 °C, a second phase-ZnCr2O4 was observed and the samples were not saturated in the field of 10000 Oe. This indicated that they were mixtures of ferromagnetic materials and paramagnetic materials. Compared with the results of the photoluminescence (PL) spectra, it was reasonably concluded that the ferromagnetism observed in the studied samples was originated from the doping of Cr in the lattice of ZnO crystallites.  相似文献   

20.
The effect of the crystalline quality of ultrathin Co films on perpendicular exchange bias (PEB) has been investigated using a Au/Co/Au/α-Cr2O3 thin film grown on a Ag-buffered Si(1 1 1) substrate. Our investigation is based on the effect of the Au spacer layer on the crystalline quality of the Co layer and the resultant changes in PEB. An α-Cr2O3(0 0 0 1)layer is fabricated by the thermal oxidization of a Cr(1 1 0) thin film. The structural properties of the α-Cr2O3(0 0 0 1) layer including the cross-sectional structure, lattice parameters, and valence state have been investigated. The fabricated α-Cr2O3(0 0 0 1) layer contains twin domains and has slightly smaller lattice parametersthan those of bulk-Cr2O3. The valence state of the Cr2O3(0 0 0 1) layer is similar to that of bulk Cr2O3. The ultrathin Co film directly grown on the α-Cr2O3(0 0 0 1) deposited by an e-beam evaporator is polycrystalline. The insertion of a Au spacer layer with a thickness below 0.5 nm improves the crystalline quality of Co, probably resulting in hcp-Co(0 0 0 1). Perpendicular magnetic anisotropy (PMA) appears below the Néel temperature of Cr2O3 for all the investigated films. Although the PMA appears independently of the crystallinequality of Co, PEB is affected by the crystalline quality of Co. For the polycrystalline Co film, PEB is low, however, a high PEB is observed for the Co films whose in-plane atom arrangement is identical to that of Cr3+ in Cr2O3(0 0 0 1). The results are qualitatively discussed on the basis of the direct exchange coupling between Cr and Co at the interface as the dominant coupling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号