首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
O.E. Awe  O. Akinlade 《Surface science》2006,600(10):2122-2128
We have used phenomenological models based on statistical mechanics to study the bulk and surface properties of Au-Sn, Al-Mg, and Mg-Tl binary liquid alloys. Our study reveals that the three alloys are weakly ordered systems with the most stable intermetallic complexes at temperatures of 823 K, 1073 K and 923 K been AuSn, Al3Mg2 and Mg4Tl, respectively. An analysis of Warren-Cowley short-range order parameter indicates that the weakest intermetallic compound is Al-Mg while Au-Sn is observed to be more chemically ordered than Mg-Tl. Furthermore, our surface properties calculations shows that Mg-atom and Sn-atom segregate to the surface over the whole concentration range of Al-Mg and Au-Sn alloys, respectively. In Mg-Tl, there is a competing effect between Tl-atom being drawn into the bulk and at the same time Tl-atom wanting to segregate to the surface over the whole concentration range.  相似文献   

2.
Highly ordered Au-Ti-SBA-15 mesoporous molecular sieves were successfully synthesized by one-pot hydrothermal synthesis in acid medium, and were characterized by XRD, UV-vis, SEM, element-mapping, HRTEM, N2 adsorption, XPS, 29Si MAS NMR, NH3-TPD and FT-IR. The as-prepared Au-Ti-SBA-15 samples were possessed of highly ordered mesostructures with larger pore diameter, pore volume and uniform mesopore size distribution. In the oxidation of styrene with H2O2 as the oxidant over Au-Ti-SBA-15 catalyst under photo-irradiation, reaction parameters, such as molar ratio of H2O2 to styrene, reaction time, solvent, the amount of catalyst, catalyst species, and the amount of 3% NaOH, were conditioned at length. As a result, highly selective epoxidation of styrene over catalyst was carried out perfectly for 10 min with high TOF of 4.75 × 103 min−1.  相似文献   

3.
Dandelion-like gallium nitride (GaN) microstructures were successfully synthesized via Ni catalyst assisted chemical vapor deposition method at 1200 °C under NH3 atmosphere by pre-treating precursors with aqueous ammonia. The as-synthesized product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). X-ray diffraction analysis revealed that as-synthesized dandelion-like GaN was pure and has hexagonal wurtzite structure. SEM results showed that the size of the dandelion-like GaN structure was in the range of 30-60 μm. Dandelion-like GaN microstructures exhibited reasonable field emission properties with the turn-on field of 9.65 V μm−1 (0.01 mA cm−2) and threshold field of 11.35 V μm−1 (1 mA cm−2) which is sufficient for applications of electron emission devices, field emission displays and vacuum micro electronic devices. Optical properties were studied at room temperature by using fluorescence spectrophotometer. Photoluminescence (PL) measurements of dandelion-like GaN showed a strong near-band-edge emission at 370.2 nm (3.35 eV) with blue band emission at 450.4 nm (2.75 eV) and 465.2 nm (2.66 eV) but with out yellow band emission. The room-temperature photoluminescence properties showed that it has also potential application in light-emitting devices. The tentative growth mechanism for the growth of dandelion-like GaN was also described.  相似文献   

4.
The magnetocaloric properties of melt-spun Gd-B alloys were examined with the aim to explore their potential application as magnetic refrigerants near room temperature. A series of Gd100−xBx (x=0, 5, 10, 15, and 20 at%) alloys were prepared by melt spinning. With the decrease in Gd/B ratio, Curie temperature (TC) remains constant at ∼293 K, and saturation magnetization, at 275 K, decreases from ∼100 to ∼78 emu/g. Negligible magnetic hysteresis was observed in these alloys. The peak value of magnetic entropy change, (−ΔSM)max, decreased from ∼9.9 J/kg K (0-5 T) and ∼5.5 J/kg K (0-2 T) for melt-spun Gd to ∼7.7 J/kg K (0-5 T) and ∼4.0 J/kg K (0-2 T), respectively for melt-spun Gd85B15 and Gd80B20 alloys. Similarly, the refrigeration capacity (q) decreased monotonously from ∼430 J/kg (0-5 T) for melt-spun Gd to ∼330 J/kg (0-5 T) for melt-spun Gd80B20 alloy. The near room temperature magnetocaloric properties of melt-spun Gd100−xBx (0≤x≤20) alloys were found to be comparable to few first-order transition based magnetic refrigerants.  相似文献   

5.
Nanocrystalline Co-Ni alloys with different compositions were prepared by polyol reduction of mixed cobalt nickel hydroxides. The precursors (mixed cobalt nickel hydroxides) were prepared by co-precipitation. Powder X-ray diffraction analysis indicated the formation of fcc phase in the alloys and their crystallite size in the range 17-25 nm. Scanning electron microscopy and transmission electron microscopy studies revealed the morphology of the particles as being close to spherical, and the energy dispersive X-ray analysis showed the stoichiometry of the alloys. The magnetization as a function of field and temperature of the alloys, measured using a superconducting quantum interference device, showed superparamagnetic behavior with negligible coercivity and remanence values.  相似文献   

6.
The aim of this work is to study the effect of the preparation conditions of Ru/CeO2 catalyst (calcination temperature and/or reduction) over the performance in the partial hydrogenation of benzene reaction in the presence of TiCl3. The catalysts were prepared through chlorinated precursors by incipient wetness impregnation method. The reaction occurred in three-phase reactional medium in presence of water at 373 K and 5.0 MPa. Temperature programmed reduction (TPR) profiles of calcinated catalysts indicate the presence of oxidated ruthenium. X-ray photoelectron spectroscopy (XPS) analysis confirms this supposition, showing that the ruthenium appears in the form of RuO2 for the sample calcinated at 673 K, while for the reduced solid at 773 K, the Ru appears in the metallic state. However, the calcination step followed or not by reduction, strongly hinders the catalytic performance. In its turn, the direct reduction leads to a more active Ru/CeO2 catalysts, as well as higher cyclohexene yields throughout all the reaction.  相似文献   

7.
The effect of crystal structures on texture induced by hot plastic deformation was studied for Sm-Co, Sm-Zr-Co, Sm-Zr-Co-Fe and Sm-Co-Fe-Mn nanocrystalline alloys with 9-22 at% Sm. Nanocrystalline precursors were obtained via high-energy ball milling and subsequent hot consolidation; deformation was carried out at 800-1150 °C. The analysis of X-ray diffraction and magnetic measurements showed that the degree of the axial [0 0 1] texture after deformation was negligible for the ordered 2:17 structure, but became increasingly noticeable for the disordered 2:17 (“1:7”), 1:5 and 2:7 structures. Because of interplay of several factors including the [0 0 1] texture, saturation magnetization and magnetocrystalline anisotropy, there was no universal trend in the hard magnetic properties with the Sm content. Optimum compositions for the maximum energy product varied from Sm11(Co, Fe, Mn)89 in the Sm-Co-Fe-Mn series to Sm11Zr2(Co, Fe)87 in the Sm-Zr-Co-Fe series to Sm17(Co, Fe)83 in the Sm-Co-(Fe) series. Iron substitution for cobalt strongly suppresses the 1:5 structure, whereas the Fe-free magnets based on the SmCo5 compound showed by far the highest room-temperature coercivity.  相似文献   

8.
Recent advances made in the area of amorphous and nanocrystalline alloys exhibiting high saturation inductions are reviewed. A new chemical composition was identified that achieves a saturation induction of 1.64 T in an iron-based amorphous alloy. This alloy, when used in electrical transformers, shows a much improved performance over the existing amorphous alloy. Nanocrystalline FeCoCuNbSiB alloys are found to have saturation induction levels reaching 1.7 T. These materials are suited for use in sensors and inductors carrying large currents. Some of these nanocrystalline alloys show a BH squareness ratio exceeding 90%, which can be utilized in pulse power devices. Recent developments in the applications of these materials are also pointed out.  相似文献   

9.
In this study, we investigated the surface characteristics of the TiN/ZrN-coated nanotubular structure on Ti-35Ta-xHf ternary alloys for bio-implant applications. These ternary alloys contained from 3 wt.% to 15 wt.% Hf contents and were manufactured in an arc-melting furnace. The Ti-35Ta-xHf alloys were heat treated in Ar atmosphere at 1000 °C for 24 h, followed by water quenching. Formation of the nanotubular structure was achieved by an electrochemical method in 1 M H3PO4 electrolytes containing 0.8 wt.% NaF. The TiN coating and ZrN coating were subsequently prepared by DC-sputtering on the nanotubular surface. Microstructures and nanotubular morphology of the alloys were examined by FE-SEM, EDX and XRD. The microstructure showed a duplex (α′′ + β) phase structure. Traces of martensite disappeared with increasing Hf content, and the Ti-35Nb-15Hf alloy had an entirely equiaxed structure of β phase. This research has shown that highly ordered, high aspect ratio, and nanotubular morphology surface oxide layers can be formed on the ternary titanium alloys by anodization. The TiN and ZrN coatings formed on the nanotubular surfaces were uniform and stable. The top of the nanotube layers was uniformly covered with the ZrN film compared to the TiN film when the Ti-35Ta-xHf alloys had high Hf content.  相似文献   

10.
Fe-40 wt%Ni alloys with granular shape and flake shape were prepared by a mechanical alloying (MA) and annealing method. The phase composition and morphology of the FeNi alloys, electromagnetic parameters, and microwave absorbing properties of the silicone rubber composite absorbers filled with the as-prepared FeNi alloy particles were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and vector network analyzer. The XRD results indicate that the crystalline structures of the Fe-40 wt%Ni alloys prepared by both one-step and two-step MA processes are face-centered cubic (fcc) Ni (Fe) solid solutions, and the structures can be retained after annealing at 600 °C for 2 h. SEM images show that the FeNi alloy powders for one-step process have a granular shape; however the particles turned into flake form when they were sequentially milled with absolute ethyl alcohol. With the increase in thickness of composite absorber, the reflection loss (RL) decreases, and the peak for minimum reflection loss shifts towards the lower frequency range. Compared to the absorbers filled with the granular FeNi alloy, the absorbers filled with flaky FeNi alloys possess higher complex permittivities and permeabilities and have a lower RL and peak frequency under the same thickness. Microwave absorbing materials with a low reflection loss peak in the range of 1-4 GHz are obtained, and their microwave absorbing properties can be adjustable by changing their thicknesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号