首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The renormalisation group approach is applied to the study of the short-time critical behaviour of the d-dimensional Ginzburg-Landau model with long-range interaction of the form in momentum space. Firstly the system is quenched from a high temperature to the critical temperature and then relaxes to equilibrium within the model A dynamics. The asymptotic scaling laws and the initial slip exponents and of the order parameter and the response function respectively, are calculated to the second order in . Received 9 June 2000 and Received in final form 2 August 2000  相似文献   

2.
E. Arashiro  H.A. Fernandes 《Physica A》2009,388(20):4379-4386
We investigate the short-time critical dynamics of the Baxter-Wu (BW) and n=3 Turban (3TU) models to estimate their global persistence exponent θg. We conclude that this new dynamical exponent can be useful in detecting differences between the critical behavior of these models which are very difficult to obtain in usual simulations. In addition, we estimate again the dynamical exponents of the four-state Potts (FSP) model in order to compare them with results previously obtained for the BW and 3TU models and to decide between two sets of estimates presented in the current literature. We also revisit the short-time dynamics of the 3TU model in order to check if, as already found for the FSP model, the anomalous dimension of the initial magnetization x0 could be equal to zero.  相似文献   

3.
Dissipative one-dimensional maps may exhibit special points (e.g., chaos threshold) at which the Lyapunov exponent vanishes. Consistently, the sensitivity to the initial conditions has a power-law time dependence, instead of the usual exponential one. The associated exponent can be identified with 1/(1-q), where q characterizes the nonextensivity of a generalized entropic form currently used to extend standard, Boltzmann-Gibbs statistical mechanics in order to cover a variety of anomalous situations. It has been recently proposed (Lyra and Tsallis, Phys. Rev. Lett. 80, 53 (1998)) for such maps the scaling law , where and are the extreme values appearing in the multifractal function. We generalize herein the usual circular map by considering inflexions of arbitrary power z, and verify that the scaling law holds for a large range of z. Since, for this family of maps, the Hausdorff dimension df equals unity for all z in contrast with q which does depend on z, it becomes clear that df plays no major role in the sensitivity to the initial conditions. Received 5 February 1999  相似文献   

4.
The autocorrelation functions for the force on a particle, the velocity of a particle and the transverse momentum flux are studied for the power law potential v(r)=ε(σr)ν (soft spheres). The latter two correlation functions characterize the Green–Kubo expressions for the self-diffusion coefficient and shear viscosity. The short-time dynamics is calculated exactly as a function of ν. The dynamics is characterized by a universal scaling function S(τ), where τ=tν and τν is the mean time to traverse the core of the potential divided by ν. In the limit of asymptotically large ν this scaling function leads to delta function in time contributions in the correlation functions for the force and momentum flux. It is shown that this singular limit agrees with the special Green–Kubo representation for hard-sphere transport coefficients. The domain of the scaling law is investigated by comparison with recent results from molecular dynamics simulation for this potential.  相似文献   

5.
The distribution of the initial short-time displacements of particles is considered for a class of classical systems under rather general conditions on the dynamics and with Gaussian initial velocity distributions, while the positions could have an arbitrary distribution. This class of systems contains canonical equilibrium of a Hamiltonian system as a special case. We prove that for this class of systems the nth order cumulants of the initial short-time displacements behave as the 2n-th power of time for all n > 2, rather than exhibiting an nth power scaling. This has direct applications to the initial short-time behavior of the Van Hove self-correlation function, to its non-equilibrium generalizations the Green's functions for mass transport, and to the non-Gaussian parameters used in supercooled liquids and glasses. PACS Number: 05.20.-y, 02.30.Mv, 66.10.-x, 78.70.Nx, 05.60.Cd  相似文献   

6.
7.
As a simple model of an anisotropic orientational glass with short range forces, the 3-state Potts model on the simple cubic lattice with nearest neighbor interactions drawn from a Gaussian distribution is considered. With Monte Carlo methods we study the response of the system to a uniform “field” which favors one of the states. This is motivated by experiments which apply stress that favors one molecular orientation of the quadrupolar glass. The responsem to that fieldh=H/k BT is analyzed in terms of an expansionm= χ1 h1 h 21 h 3+..., where χ1 is the linear susceptibility, and χ213 are nonlinear susceptibilities. Unlike the case of spin glasses, where the spin inversion symmetry of the system in the absence of fields implies χ2≡0,χ2 is nonzero here and diverges to −∞ at the zero temperature transition of the model, while χ3 diverges to +∞ as in spin glasses. At inifinite temperature, however, χ1=1/3, χ2=1/18 and χ3=-1/54, i.e. the nonlinear susceptibilities have a different sign as at low temperature. In contrast, a random field does not induce a uniform order parameterm but only a glass order parameterq. The temperature dependence of this glass order parameterq(T) shows for intermediate field strength order parameterq(T) shows for intermediate field strength a maximum of the slopedq(T)/dT very similar to corresponding experiments.  相似文献   

8.
9.
We present an analytical approach of the dynamics of a polymer when it is quenched from a solvent into a good or bad solvent. The dynamics is studied by means of a Langevin equation, first in the absence of hydrodynamic effect, then taking into account the hydrodynamic interactions with the solvent. The variation of the radius of gyration is studied as a function of time. In both cases, for the first stage of collapse or swelling, the evolution is described by a power law with a characteristic time proportional to N 4/3 (N), where N is the number of monomers, without (with) hydrodynamic interactions. At larger times, scaling laws are derived for the diffusive relaxation time. Received: 10 March 1998 / Received in final form: 15 September 1998 / Accepted: 25 September 1998  相似文献   

10.
A new site percolation model, directed spiral percolation (DSP), under both directional and rotational (spiral) constraints is studied numerically on the square lattice. The critical percolation threshold p c ≈ 0.655 is found between the directed and spiral percolation thresholds. Infinite percolation clusters are fractals of dimension d f ≈ 1.733. The clusters generated are anisotropic. Due to the rotational constraint, the cluster growth is deviated from that expected due to the directional constraint. Connectivity lengths, one along the elongation of the cluster and the other perpendicular to it, diverge as pp c with different critical exponents. The clusters are less anisotropic than the directed percolation clusters. Different moments of the cluster size distribution P s(p) show power law behaviour with | p - p c| in the critical regime with appropriate critical exponents. The values of the critical exponents are estimated and found to be very different from those obtained in other percolation models. The proposed DSP model thus belongs to a new universality class. A scaling theory has been developed for the cluster related quantities. The critical exponents satisfy the scaling relations including the hyperscaling which is violated in directed percolation. A reasonable data collapse is observed in favour of the assumed scaling function form of P s(p). The results obtained are in good agreement with other model calculations. Received 10 November 2002 / Received in final form 20 February 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: santra@iitg.ernet.in  相似文献   

11.
We propose a new perturbation approach to finitesize effects within the 4 field theory for a one-component order parameter with periodic boundary conditions. Our approach is applicable both above and belowT c . Renormalization-group calculations of finite-size scaling functions in three dimensions are compared with new Monte Carlo data for theL×L×L Ising model withL=8, 16, 32. The field-theoretic predictions are in good overall agreement with the Monte Carlo data.Dedicated to Professor Herbert Wagner on the occasion of his 60th birthday  相似文献   

12.
We study the site and bond quantum percolation model on the two-dimensional square lattice using series expansion in the low concentration limit. We calculate series for the averages of , where T ij (E) is the transmission coefficient between sites i and j, for k=0, 1, , 5 and for several values of the energy E near the center of the band. In the bond case the series are of order p14 in the concentration p(some of those have been formerly available to order p10) and in the site case of order p16. The analysis, using the Dlog-Padé approximation and the techniques known as M1 and M2, shows clear evidence for a delocalization transition (from exponentially localized to extended or power-law-decaying states) at an energy-dependent threshold p q(E) in the range , confirming previous results (e.g. and for bond and site percolation) but in contrast with the Anderson model. The divergence of the series for different kis characterized by a constant gap exponent, which is identified as the localization length exponent from a general scaling assumption. We obtain estimates of . These values violate the bound of Chayes et al. Received 28 February 2000  相似文献   

13.
The poor man's scaling is extended to higher order by the use of the open-shell Rayleigh-Schr?dinger perturbation theory. A generalized Kondo-type model with the SU(n)SU(m) symmetry is proposed and renormalized to the third order. It is shown that the model has both local Fermi-liquid and non-Fermi-liquid fixed points, and that the latter becomes unstable in the special case of n=m=2. Possible relevance of the model to the newly found phase IV in CexLa1-xB6 is discussed. Received: 24 February 1998 / Accepted: 17 April 1998  相似文献   

14.
By differential Scanning Calorimetry (DSC), at low heating rate and using a technique of fractionation, we have measured the equilibrium DSC signal (heat flow) J q 0 of two families of porous glass saturated with water. The shape of the DSC peak obtained by these techniques is dependent on the sizes distribution of the pores. For porous glass with large pore size distribution, obtained by sol-gel technology, we show that in the domain of ice melting, the heat flow Jq is related to the melting temperature depression of the solvent, ΔT m , by the scaling law: J q 0∼ΔT m - (1 + D). We suggest that the exponent D is of the order of the fractal dimension of the backbone of the pore network and we discuss the influence of the variation of the melting enthalpy with the temperature on the value of this exponent. Similar D values were obtained from small angle neutron scattering and electronic energy transfer measurements on similar porous glass. The proposed scaling law is explained if one assumes that the pore size distribution is self similar. In porous glass obtained from mesomorphic copolymers, the pore size distribution is very sharp and therefore this law is not observed. One concludes that DSC, at low heating rate ( q? 2°C/min) is the most rapid and less expensive method for determining the pore distribution and the fractal exponent of a porous material. Received 23 July 1999 and Received in final form 16 February 2001  相似文献   

15.
It is demonstrated that finite size scaling at first order phase transitions is something basically very simple: As the number of particlesN in the system goes to infinity,s N (), the entropy per particle, rapidly approaches its limiting behaviours (). Onces () has been determined, the thermal behaviour of the infinite system is completely known and in case of a first order phase transition the specific heat exhibitis a -function singularity. If, however, the specific heatc N (T) per particle is calculated from the canonical partition functionZ N ()=d exp {N[s N ()-]}, then even ifs N () is replaced by its limiting forms (),c N (T) only exhibits a peak with a finite maximum value proportional toN which is due to the explicit factorN in front of the angular bracket in the exponent. This is theN-dependence which has recently been called finite size scaling at first order phase transitions. The entropys N () can very efficiently be determined in the dynamical ensemble.  相似文献   

16.
We study the reaction kinetics of end-functionalized polymer chains dispersed in an unreactive polymer melt. Starting from an infinite hierarchy of coupled equations for many-chain correlation functions, a closed equation is derived for the 2nd order rate constant k after postulating simple physical bounds. Our results generalize previous 2-chain treatments (valid in dilute reactants limit) by Doi [#!doi:inter2!#], de Gennes [#!gennes:polreactionsiandii!#], and Friedman and O'Shaughnessy [#!ben:interdil_all_aip!#], to arbitrary initial reactive group density n0 and local chemical reactivity Q. Simple mean field (MF) kinetics apply at short times, .For high Q, a transition occurs to diffusion-controlled (DC) kinetics with (where xt is rms monomer displacement in time t) leading to a density decay . If n0 exceeds the chain overlap threshold, this behavior is followed by a regime where during which k has the same power law dependence in time, , but possibly different numerical coefficient. For unentangled melts this gives while for entangled cases one or more of the successive regimes ,t -3/8 and t -3/4 may be realized depending on the magnitudes of Q and n0. Kinetics at times longer than the longest polymer relaxation time are always MF. If a DC regime has developed before then the long time rate constant is where R is the coil radius. We propose measuring the above kinetics in a model experiment where radical end groups are generated by photolysis. Received: 2 June 1998 / Revised: 9 July 1998 / Accepted: 10 July 1998  相似文献   

17.
,Static and dynamic properties of the Potts model on the simple cubic lattice with nearest neighbor -interaction are obtained from Monte Carlo simulations in a temperature range where full thermal equilibrium still can be achieved (). For a lattice size L = 16, in this range finite size effects are still negligible, but the data for the spin glass susceptibility agree with previous extrapolations based on finite size scaling of very small lattices. While the static properties are compatible with a zero temperature transition, they certainly do not prove it. Unlike the Ising spin glass, the decay of the time-dependent order parameter is compatible with a simple Kohlrausch function, , while a power law prefactor cannot be distinguished. The Kohlrausch exponent y ( T ) decreases from at [0pt] to at [0pt] however. The relaxation time is compatible with the exponential divergence postulated by McMillan for spin glasses at their lower critical dimension, but the exponent that can be extracted still differs significantly from the theoretical value, . Thus the present results support the conclusion that the Potts spin glass in d = 3 dimensions differs qualitatively from the Ising spin glass. Received: 8 October 1997 / Accepted: 27 November 1997  相似文献   

18.
We present an experimental study of the spreading dynamics of symmetric diblock copolymer droplets above and below the order-disorder transition. Disordered diblock droplets are found to spread as a homopolymer and follow Tanner’s law (the radius grows as Rt m , where t is time and m = 1/10 . However, droplets that are in the ordered phase are found to be frustrated by the imposed lamellar microstructure. This frustration is likely at the root of the observed deviation from Tanner’s law: droplet spreading has a much slower power law ( m ∼ 0.05±0.01 . We show that the different spreading dynamics can be reconciled with conventional theory if a strain-rate-dependent viscosity is taken into account.  相似文献   

19.
We propose a growing network model with link constraint, in which new nodes are continuously introduced into the system and immediately connected to preexisting nodes, and any arbitrary node cannot receive new links when it reaches a maximum number of links km. The connectivity of the network model is then investigated by means of the rate equation approach. For the connection kernel A(k)=kγ, the degree distribution nk takes a power law if γ≥1 and decays stretched exponentially if 0≤γ< 1. We also consider a network system with the connection kernel A(k)=kα(km-k)β. It is found that nk approaches a power law in the α> 1 case and has a stretched exponential decay in the 0≤α< 1 case, while it can take a power law with exponential truncation in the special α=β=1 case. Moreover, nk may have a U-type structure if α> β.  相似文献   

20.
The finite size behavior of the susceptibility, Binder cumulant and some even moments of the magnetization of a fully finite O(n) cubic system of size L are analyzed and the corresponding scaling functions are derived within a field-theoretic ɛ-expansion scheme under periodic boundary conditions. We suppose a van der Waals type long-range interaction falling apart with the distance r as r - (d + σ), where 2 < σ < 4, which does not change the short-range critical exponents of the system. Despite that the system belongs to the short-range universality class it is shown that above the bulk critical temperature T c the finite-size corrections decay in a power-in-L, and not in an exponential-in-L law, which is normally believed to be a characteristic feature for such systems. Received 8 August 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号