首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
大气压介质阻挡放电超四边形斑图的等离子体参量   总被引:1,自引:0,他引:1       下载免费PDF全文
陈俊英  董丽芳  李媛媛  宋倩  嵇亚飞 《物理学报》2012,61(7):75211-075211
本工作利用双水电极介质阻挡放电装置,采用发射光谱方法,在大气压氩气介质阻挡放电中研究了由不同空间尺度 微放电通道构成的超四边形斑图的等离子体参量.实验发现直径较大的微放电通道(大点)和直径较小的微放电通道(小点)亮度不同.采用氮分子第二正带系谱线计算了分子振动温度,利用谱线强度比方法得到了电子激发温度,用氩原子696.54 nm谱线的Stark展宽估算了电子密度.结果显示小点的电子密度和分子振动温度均高于大点,而电子激发温度低于大点.这说明稳定超四边形斑图中不同尺度微放电的等离子体状态不同.  相似文献   

2.
大气压下介质阻挡放电应用领域具有多范畴、深广度、常态化等优势,针对同轴电极放电试验进行了系列参数诊断。采用自主研发的介质阻挡放电助燃激励器,在一个标准大气压、放电频率11.4 kHz、放电峰值电压5.4~13.4 kV(间隔1.0 kV)条件下进行了氩气电离试验。采用原子发射光谱法(AES)对氩等离子体谱线的激发、分光进行了检测分析;选用二谱线法及Boltzmann法测试了电子激励温度;根据Stark展宽效应计算了电子密度;获得了电子激励温度及电子密度随放电峰值电压增长的变化规律。结果表明,在试验电压条件下电子激励温度并不随外加电压的升高而递增,这表明通道内微放电的主要特征并不依赖于外部电压的供给,而是取决于气体组份、气体压强和放电模型,增大外加放电电压仅增加单位时间内微放电的数量,经整合电子激励温度可达3 500 K符合典型的低温等离子体特征;电子密度随外加电压的增长而趋于准线性趋势,电子密度数量级可达到108~109 cm-3,电离度偏弱。这些参数的探索对等离子体研讨有重大意义。  相似文献   

3.
通过自主设计正极性Marx纳秒脉冲电源,在不同放电频率、不同电源电压幅值下,采用发射光谱在真空环境下对氩气放电时的电子激发温度和电子密度进行测量计算。通过双谱线法选取合适的Ar原子谱线,求得电子激发温度在1 550~3 400 K之间,在正极性脉冲电源做电压源,且电源电压一定时,电子激发温度随着电源频率的升高而呈现上升趋势,在电源频率一定时,电子激发温度也随着电源电压的增加而升高。依据Stark展宽原理对真空体积介质阻挡放电时的电子密度进行了测量计算。电子密度的数量级可达1013 m-3,当电源电压不变时,电子密度随电源频率的增加呈现上升趋势,当电源频率不变,电子密度随着电源电压的升高也逐渐提升。  相似文献   

4.
采用发射光谱法,首次研究了等离子体参数及激发状态对介质阻挡放电六边形斑图稳定性的影响。在氩气/空气混合气体的介质阻挡放电中,随着电压的升高,放电丝直径增大,六边形斑图逐渐稳定,同时放电颜色由紫色逐渐变为灰白色,说明其等离子体状态及参数可能发生了变化。测量了六边形斑图放电过程中氮分子谱线和氩原子谱线相对于氩原子763.51 nm的相对强度、分子振动温度和电子激发温度随外加电压的变化。结果发现:氮分子谱线相对强度随电压增加而降低,氩原子谱线相对强度却升高;分子振动温度与电子激发温度均随电压增加而增大。这些现象表明:随着电压增大,电子能量增加。由此,氩原子激发增多,放电丝直径增大,介质表面上沉积的壁电荷面积增大,放电丝之间的相互作用增强,六边形斑图趋于稳定。  相似文献   

5.
为了更加深入的研究大气压条件下Ar/CH4等离子体射流的放电机理和其内部电子的状态,通过自主设计的针-环式介质阻挡放电结构,在放电频率10 kHz、一个大气压条件下产生了稳定的Ar/CH4等离子体射流,并利用发射光谱法对其进行了诊断研究。对大气条件下Ar/CH4等离子体射流的放电现象及内部活性粒子种类进行诊断分析,重点研究了不同氩气甲烷体积流量比、不同峰值电压对大气压Ar/CH4等离子体射流电子激发温度、电子密度以及CH基团活性粒子浓度的影响规律。结果表明,大气压条件下Ar/CH4等离子体射流呈淡蓝色,在射流边缘可观察到丝状毛刺并伴有刺耳的电离声同时发现射流尖端的形态波动较大;通过发射光谱可以发现Ar/CH4等离子体射流中的主要活性粒子为CH基团,C,CⅡ,CⅢ,CⅣ,ArⅠ和ArⅡ,其中含碳粒子的谱线主要集中在400~600 nm之间,ArⅠ和ArⅡ的谱线分布在680~800 nm之间;可以发现CH基团的浓度随峰值电压的增大而增大,但CH基团浓度随Ar/CH4体积流量比的增大而减小,同时Ar/CH4等离子体射流中C原子的浓度随之增加,这表明氩气甲烷体积流量比的增大加速了Ar/CH4等离子体射流中C-H的断裂,因此可以发现增大峰值电压与氩气甲烷体积流量比均可明显的加快甲烷分子的脱氢效率,但增大氩气甲烷体积流量比的脱氢效果更加明显。通过多谱线斜率法选取4条ArⅠ谱线计算了不同工况下的电子激发温度,求得大气压Ar/CH4等离子体射流的电子激发温度在6 000~12 000 K之间,且随峰值电压与氩气甲烷体积流量比的增大均呈现上升的趋势;依据Stark展宽机理对Ar/CH4等离子体射流的电子密度进行了计算,电子密度的数量级可达1017 cm-3,且增大峰值电压与氩气甲烷体积流量比均可有效的提高射流中的电子密度。这些参数的探索对大气压等离子体射流的研讨具有重大意义。  相似文献   

6.
为了加快低温氦气等离子体射流的工程化进程,通过自主设计的同轴式介质阻挡放电等离子体射流发生器,在放电频率10 kHz,一个大气压条件下产生了稳定的氦气等离子体射流。通过分析不同工况下的电压电流波形可以发现单纯增加氦气体积流量只能小幅的增加电流脉冲幅值,而对放电时间、电流脉冲数的影响不大。增加放电峰值电压时电流脉冲幅值会得到较大幅度增加。通过发射光谱法对大气压氦气等离子射流的活性粒子种类、电子激发温度、电子密度进行了诊断。结果表明,大气压氦气等离子体射流中的主要活性粒子为He Ⅰ原子、N2第二正带系、N+2的第一负带系、羟基(OH),H原子的巴尔末线系(Hα和Hβ)与O原子,这表明虽然该试验中使用的氦气纯度已达99.99%,但其中仍残留有少量的空气,同时放电时大气中的空气会被卷吸到放电空间发生电离。还可以发现,主要活性粒子的相对光谱强度随氦气体积流量的增加及放电峰值电压的增大均呈现上涨的趋势。选用He Ⅰ原子的四条谱线对不同试验工况下的电子激发温度进行了计算,得到大气压氦气等离子体射流的电子激发温度在3 500~6 300 K之间,电子激发温度随放电峰值电压与氦气体积流量的增大总体上呈现上升的趋势。但由于反向电场的存在,某些峰值电压可能会出现电子激发温度下降的情况;根据Stark展宽原理对大气压氦气等离子体射流的电子密度进行了计算,发现电子密度的数量级可达1015 cm-3,同时增大峰值电压与氦气体积流量均可有效的提高射流中的电子密度。这些参数的研究对氦气等离子体射流在工程实际中的应用具有重要意义。  相似文献   

7.
采用平行平板结构的微间隙介质阻挡放电装置,在锯齿波电压激励下产生了电流波形具有平台状的阶梯模式放电。研究发现,随锯齿波电压峰值的增大,放电平台的持续时间和幅值随之增加。采用光学方法对单个放电平台的时间演化进行研究,发现其放电机制属于大气压汤森放电。通过对放电的发射光谱进行采集,发现包含氮分子的第二正带系(C~3Π_u→B~3Π_u)、OH(A~2∑~+→X~2Π)和ArⅠ的特征谱线。随锯齿波电压峰值的增大,OH(308.8 nm)谱线强度和分子振动温度增加,但电子激发温度减小。通过对ArⅠ(750.4 nm)强度进行比较,发现相同峰值电压下锯齿波激励介质阻挡放电比正弦激励介质阻挡放电产生的谱线强度更大。利用气体放电理论,对上述物理现象进行了定性解释。  相似文献   

8.
大气压空气中介质阻挡均匀放电产生的等离子体在工业领域具有广阔的应用前景,为研究其产生条件及机理,利用微间隙介质阻挡放电装置,在大气压空气中实现了均匀放电。电学实验结果表明,低电压时电流波形在电压每半个周期存在若干个脉冲宽度很小的脉冲,肉眼观察到大量的微放电丝,随着外加电压增加,放电功率逐渐增加,放电空间内微放细丝增多。当电压增大到9.2 kV时,电流波形在电压每半个周期只存在一个宽度较大(约5.5 μs)强度较强的脉冲,观察不到微放电丝,微放电最终扩展叠加形成均匀放电。采集了光谱范围为330~420 nm的发射光谱,氮分子第二正带系337.1 nm的谱线强度明显比氮分子离子第一负带系391.4 nm的强。将337.1 nm谱线的强度归一,391.4 nm谱线的强度即反应了电子平均能量的大小,同时拟合计算了反映分子内部能量的氮分子振动温度。结果表明电子平均能量和分子内部能量都随外加电压的增加而降低。表明放电空间电场能量较低时不容易形成丝状放电,均匀放电模式中电子平均能量比微放电丝放电模式中的低。这些结果对于空气中介质阻挡均匀放电在工业应用方面具有一定的指导意义。  相似文献   

9.
采用发射光谱方法对大气压氩气介质阻挡放电(DBD)系统中的电子密度进行了诊断。通过考虑放电等离子体中的各种加宽机制, 采用自编的非对称卷积程序对氩原子发射谱线的线型进行分析拟合, 再通过反卷积的方法将各种加宽机制分离开来, 最终将Stark展宽分离出来进行大气压氩气介质阻挡放电电子密度的计算。诊断结果表明, 在大气压氩气介质阻挡放电中当有三个放电丝存在, 电子温度为10000 K时, 电子密度约为4.06×1021 m-3, 诊断结果和模拟结果符合得很好。此方法不仅可以应用在大气压介质阻挡放电中, 还可以用于其他含有非氢气体的大气压等离子体电子密度的测量。  相似文献   

10.
仪器展宽对大气压等离子体电子密度测量的影响   总被引:2,自引:0,他引:2  
实验使用两台不同的单色仪,采用光谱线型法测量了大气压氩气介质阻挡放电中的电子密度.诊断结果表明,由于不同的单色仪其仪器加宽不同,仪器加宽对总的光谱线型有较大影响.通过考虑等离子体中的各种加宽机制,采用卷积和反卷积的方法对氩原子发射谱线线型进行了分析,从整个光谱线型中分离出Stark线型,排除了仪器加宽对最终诊断结果的影响.从而最终测量了大气压氩气介质阻挡放电中的电子密度.测量得到在大气压氩气介质阻挡放电中单个放电丝存在时,电子温度为10000K时,电子密度约为3.05-3.26×1021 m-3.此方法不仅可以应用在大气压介质阻挡放电中,还可以用于测量其它大气压等离子体电子密度.  相似文献   

11.
大气压氩气介质阻挡放电中的电子激发温度   总被引:8,自引:4,他引:4  
采用发射光谱强度比法,测量了大气压氩气介质阻挡放电(DBD)中的电子激发温度。实验在690~800 nm的范围内测量了大气压氩气DBD的发射光谱,经分析发现这些谱线全部是氩原子的发射谱线。为了测量电子激发温度,选用相距较近的763.51 nm(2P6→1S5),772.42 nm(2P2→1S3)的两条光谱线。结果发现电子温度的范围为0.1~0.5 eV,电子激发温度随电压的增加而增加,随流量的增加而减小。实验还发现氩气流动与非流动时电子激发温度有明显的差别。上述结果对介质阻挡放电在工业领域上的应用具有重要意义。  相似文献   

12.
由于具有工作气压高、放电均匀等特点,大气压介质阻挡放电成为近年来非平衡等离子体领域研究的主要技术。电极结构是电离特性的主要影响因素之一,因此,通过电极结构优化来改善电离特性,对等离子体放电设备的应用领域拓展及性能优化至关重要。为改善大气压介质阻挡放电的电离特性,产生高活性、高均匀性的低温等离子体,基于自主设计的同轴介质阻挡放电装置进行了不同电极结构的电离试验及参数诊断;在一个标准大气压、放电频率11.4 kHz、放电峰值电压5.4~13.4 kV条件下进行了氩气电离试验;采用原子发射光谱法(AES)对氩等离子体谱线的激发、分光进行了检测分析;研究了螺纹电极、齿状电极、圆柱电极放电的特征光谱参数及外施电压对介质阻挡放电特征参数的影响。结果表明,齿状电极放电所形成等离子体的放电强度更大且放电效果显著,电子平均能量利用率低,电子激励温度弱于圆柱电极;圆柱电极放电强度较弱,但易形成大面积均匀性等离子体;大气压环境下电子激励温度不因外源电压的升高而单调递加,这表明通道内微放电的主要特征并不依赖于外施电压的供给,而是取决于电极结构、气体组份、气体压强;增大外施电压仅能增加单位时间内微放电的数量,经整合电子激励温度可达3 500 K,符合典型的低温等离子体特征。  相似文献   

13.
常压射流等离子体发射光谱研究   总被引:2,自引:0,他引:2  
使用改进介质阻挡放电装置生成常压射流等离子体,采用光纤光栅光谱仪在300~1 000 nm范围记录了不同放电电压的氩气发射光谱,并比较了空气和氩气常压介质阻挡放电等离子体发射光谱,分析发现氩气发射光谱中的谱线都是氩原子的发射谱线,表明常压射流装置产生的等离子体全部为氩等离子体,而无其他空气成分参与放电。为测量电子激发温度,选用相距较近的763.51和772.42 nm两条光谱线对电子温度进行分析,结果表明电子激发温度的范围在0.1~0.3 eV,而且它还随着放电电压的增加而增加。初步使用“红外测温仪”测量被处理材料表面温度,结果发现材料表面的温度也随着放电电压的增加而增加,范围在50~100 ℃,材料表面温度的变化趋势可以近似表征等离子体宏观温度变化趋势。通过分析常压射流等离子体的温度特性,探讨了常压射流等离子体温度对材料改性研究的意义。  相似文献   

14.
大气压氩气放电六边形斑图的电子激发温度研究   总被引:1,自引:1,他引:0  
采用特殊设计的气体介质阻挡放电实验装置,对大气压氩气放电六边形斑图的放电信号及激发光谱进行了测量。采用发射光谱强度比法,计算了放电丝呈六边形斑图时的电子激发温度。实验发现,随着驱动电压频率的升高,六边形斑图的电子激发温度明显升高,各放电通道之间的放电时间相关程度提高。该工作对控制斑图的形成和研究斑图动力学具有重要参考价值。  相似文献   

15.
The plasma parameters, discharge plasma uniformity and filamentation processes in high pressure (near atmospheric pressure) dielectric barrier discharges (DBD) in argon are studied using the developed two-dimensional 2D(r, z) model. The applied voltage frequency, the voltage shape, the dielectric layers material and its thickness are varied and the effects of such variations on plasma uniformity, discharge structure and operation are studied. The DBD discharges with different dielectric layers thickness, dielectric constants and secondary electron emission coefficients are simulated. It was shown that the dielectric layer thickness is an important parameter for producing high pressure discharges uniform over the radius. The possibility of the radially uniform discharges at atmospheric pressure was shown in the present study.  相似文献   

16.
近大气压条件下,在介质阻挡放电系统中得到了氩气和空气混合气体在300~800 nm范围内的发射光谱,研究了中等pd值(约6.4×103 Pa·cm) 氩气和空气混合气体中电子激发温度与分子振动温度。实验选用两条ArⅠ谱线763.51 nm(2P6→1S5)与772.42 nm(2P2→1S3),用强度对比法测量电子激发温度,利用氮分子第二正带系(C 3ΠuB 3Πg)计算氮分子振动温度。实验结果表明:电子激发温度和分子振动温度均随电压的增加而增加,并且电子激发温度随电压的变化速率大于分子振动温度的变化速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号