首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new kind of hybrid nanoparticles composed of copper ions and poly(p-phenylenediamine) has been synthesized in aqueous solution at room temperature. The nanoparticles have been characterized and studied by TEM, AFM, XPS, and UV spectroscopy. The synthesized nanoparticles are prone to connect with each other and form large nanoclusters. The diameters of the nanoparticles are 46 ± 26 nm. It is believed that a porous network structure exists inside the nanoparticles. The UV absorption spectra of the nanoparticles are sensed with pH and can be reversibly changed according to the pH level. This phenomenon of the nanoparticles has some potential applications. Nanosheets and branched rods composed of copper ions and poly(p-phenylenediamine) have also been obtained by using different ratios of copper ions and p-phenylenediamine as the initial reactant.  相似文献   

2.
Gold nanoparticles have been studied for many biomedical applications. However, alterations in the gold nanoparticles’ environment frequently lead to the formation of aggregates and agglomerates, which have not been well characterized. These new structures could significantly change the biological impact of the nanoparticles, so the appropriate characterization of these structures prior to biological administration is vital for the correct interpretation of toxicology results. By varying the solvent or heating under pressure, four reproducible gold nanoparticles structures were created: 10 nm primary particles, aggregates of the primary particles that contain non-reversible bonds between the individual nanoparticles, agglomerates of primary particles that contain reversible interactions between the individual nanoparticles, and agglomerated aggregates that have reversible bonds linking individual aggregates. Ultraviolet–visible (UV–Vis) spectroscopy, thermal gravitational analysis, and neutron activation analysis were each found to accurately measure the concentration of the primary particles. The primary particles measured 10 nm by dynamic light scattering (DLS) and had a spherical morphology by transmission electron microscopy (TEM) while the aggregates measured 110 nm by DLS and had a distorted morphology by TEM. The agglomerate and aggregated agglomerate samples both measured >1,000 nm by DLS, but the individual particles had significantly different morphologies by TEM. Multiple other analytical techniques, including ultracentrifugation, gel electrophoresis, and X-ray diffraction, also showed unique traits for each structure. The structural differences did not change in the presence of cell culture media or rat serum. In addition, the primary particles, aggregates, and agglomerates each had a unique UV–Vis spectrum, allowing for an inexpensive, rapid method to differentiate between the structures.  相似文献   

3.
In drug delivery applications, particle-based systems have been used widely due to their physicochemical properties such as size, shape, and surface charge to achieve desirable properties in intracellular environments. The way in which nanoparticles enter a biological cell is an important factor in determining their efficacy as drug carriers, their biodistribution, and toxicity. Most research thus far has focused on the comparison of spherical and rod-like particles on cellular internalization and transport. Here, the synthesis of bowl-shaped polydopamine (PDA) mesoporous nanoparticles with an average diameter of 200 nm and well-controlled radially oriented mesochannels are reported. By incubating bowl-shaped PDA nanoparticles and spherical nanoparticles with HeLa cells, their internalization behaviors are investigated using a suite of characterization techniques. Extensive experimental results demonstrate that bowl-shaped PDA nanoparticles adhere to the cell more efficiently and a faster rate of cellular uptake of bowl-shaped nanoparticles compared to their spherical counterparts. Overall, the cellular internalization behavior of particles is shape-dependent, and such information is crucial in designing nanoparticles for biomedical applications.  相似文献   

4.
《Radiation measurements》2007,42(4-5):708-711
The paper reports comparative studies on synthesized aluminium nitride nanotubes, nanoparticles and commercially available micron-sized AlN powder using different spectroscopic techniques: cathodoluminescence measurements (CL), X-ray absorption near edge spectroscopy (XANES) and Fourier-transform infrared spectroscopy (FTIR). Crucial distinctions in CL spectra are observed for nano- and microsized aluminium nitride powders; systematic shift of the IR absorption maximum has been detected for nanostructured aluminium nitride as compared to commercial samples. Through XANES experiments on Al K-edge structural differences between nano- and bulk AlN are revealed, intensity of features in absorption spectra has been found to be a function of wurtzite and zincblend phases amount in nanostructured samples.  相似文献   

5.
Rhodium nanoparticles were synthesized by the reduction of Rh3+ ion in ethanol solvent with use of the polyvinylpyrrolidone (PVP) of various molecular weights and the solvent of different volume ratios of water to ethanol. The formed Rh(PVP) nanoparticles have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) techniques. The TEM and AFM results show that the Rh(PVP) nanoparticles are monodispersed and do not agglomerate with each other. The particle size can be controlled by the molecular weight of PVP and/or the water/ethanol ratio of the solvent. The XPS and NEXAFS results indicate that the chlorine derived from RhCl3(3H2O) remains in the obtained nanoparticles but can be removed by heating.  相似文献   

6.
This article demonstrates the influence of various surfactants of different polarities—anionic, sodium dodecyl sulfate, cationic, hexadecyltrimethylammonium bromide and non-ionic, and polyoxyethylene iso-octyl phenyl ether (TX-100)—on the formation of CdSe nanoparticles in aqueous solutions. The surfactant-stabilizing effect has been monitored using transmission electron microscopy. Spectral properties of CdSe nanoparticles have been investigated; the structure of the long-wave edge of the fundamental absorption band of CdSe nanoparticles has been analyzed. It has been shown that the variation of the synthesizing conditions (stabilizer’s nature and concentration, CdSe concentration, etc.) allows the tailoring of the CdSe nanoparticle size in the range of 8–17 nm. Lifshitz–Slyrzov–Wagner kinetic analysis has also been performed using the size variation according to ripening temperature and time period. The differences in the stabilization ability of tested substances are discussed with respect to their structure and possible mechanism of the surface interaction with the nanoparticles. The flexible surface chemistry of the CdSe-micelles causes them to be water soluble and allows their further conjugation with protein molecules through electrostatic attraction. The interaction between functionalized CdSe nanoparticles with protein molecules have been investigated using fluorescence spectroscopy.  相似文献   

7.
A novel sonochemical method for the selective synthesis of alpha-HgS (cinnabar) and beta-HgS (metacinnabar) nanoparticles in aqueous solutions is reported in this paper. alpha-HgS and beta-HgS nanoparticles have been selectively prepared by choosing sodium thiosulfate and thiourea as the sulfur source respectively. To study the crystalline structure, size, morphology and composition of the products, characterization techniques including X-ray powder diffraction, transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis are employed. The optical properties of the nanoparticles are investigated by UV-visible absorption spectroscopic measurements. The direct band gap of the as-prepared alpha-HgS nanoparticles with an average size of 12 nm is calculated to be 2.8 eV according to the absorption spectrum. In the case of the beta-HgS nanoparticles with an average size of 13 nm, a broad absorption peak is observed in the UV-visible absorption spectrum, which can be ascribed to the special surface state of this sample. Probable mechanisms for the sonochemical formation of alpha-HgS and beta-HgS nanoparticles in aqueous solutions are presented. The optimum pH value of the stock solutions and the effect of sonication time on the particle size are also investigated.  相似文献   

8.
In the present study, the pulsed laser ablation in liquid technique was used to produce palladium nanoparticles in acetone and in water. The composition, morphology and oxidation state of the obtained nanoparticles have been characterized by HR-TEM, XPS and XRD techniques. The results evidence that the nature of the solvent influences the physical–chemical properties of the products. In acetone non-aggregate metallic nanoparticles have been obtained, while in water the oxidation of the particles surface is present, as showed by the XPS analysis. Moreover, the particles obtained in water are aggregated and the coalescence effect is evident. The different size distributions of nanoparticles obtained in the two liquids have been interpreted considering the different cavitation bubble dynamics.  相似文献   

9.
Engineered silver nanoparticles (AgNPs) are among the most used nanomaterials in consumer products, therefore concerns are raised about their potential for adverse effects in humans and environment. Although an increasing number of studies in vitro and in vivo are being reported on the toxicity of AgNPs, most of them suffer from incomplete characterization of AgNPs in the tested biological media. As a consequence, the comparison of toxicological data is troublesome and the toxicity evaluation still remains an open critical issue. The development of a reliable protocol to evaluate interactions of AgNPs with surrounding proteins as well as to assess their colloidal stability is therefore required. In this regard, it is of importance not only to use multiple, easy-to-access and simple techniques but also to understand limitations of each characterization methods. In this work, the morphological and structural behaviour of AgNPs has been studied in two relevant biological media, namely 10 % FBS and MP. Three different techniques (Dynamic Light Scattering, Transmission Electron Microscopy, UV–Vis spectroscopy) were tested for their suitability in detecting AgNPs of three different sizes (10, 40 and 100 nm) coated with either citrate or polyvinylpyrrolidone. Results showed that UV–Vis spectroscopy is the most versatile and informative technique to gain information about interaction between AgNPs and surrounding proteins and to determine their colloidal stability in the tested biological media. These findings are expected to provide useful insights in characterizing AgNPs before performing any further in vitro/in vivo experiment.  相似文献   

10.
Surface‐enhanced Raman scattering has been employed to characterize the adsorption of an oligopeptide containing histidine residues on colloidal nanoparticles of metals as Ag and Cu obtained by laser ablation. The title molecule consists of two histidine and glycine residues alternating along the chain and terminating with an acetyl on one side and an amide group on the other. Histidine residues are found to act as docking sites of the molecule to the surface of the metal nanoparticles. Semiempirical parameterized model number 3 (PM3) calculations performed on molecule/metal model complexes suggest possible different adsorption geometries depending on the metallic substrate. This investigation could provide useful information to address the interaction of protein systems with metal ions, which is often related to fundamental biological process in living systems and can play an important role in different neuropathological diseases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Nanoparticles and nanocomposites have become a major focus of interest in science and technology due to exceptional properties they provide. However, handling and processing of ultra-fine powders is very challenging because they are extremely cohesive. Fluidization is one of techniques available to process powders. It has become increasingly important to understand how these nanoparticles can be handled and processed to benefit from their favourable properties. A high spatial (down to 400 nm) and temporal resolution (down to 1 ms) X-ray imaging apparatus has been designed to study nanoparticles in fluidized beds under different gas flow velocities. The mean volume distribution of the nanoparticle agglomerates was determined with X-ray microtomography. The X-ray microtomography technique provides valuable in situ, non-destructive structural information on the morphological changes that take place during fluidisation of powder samples.  相似文献   

12.
雷皓  魏黎  刘买利 《物理》2006,35(4):294-298
纳米尺度物质的生物效应研究是近年来在纳米科技发展过程中派生出来的一个崭新的、发展很快的且多学科高度交叉的领域,需要把纳米科学、物理学、化学以及生物医学等多学科的研究手段结合起来,进行综合研究.核磁共振波谱与成像,作为一种原位、无损、动态、实时、多信息的检测手段,在此领域的研究中将发挥不可或缺的重要作用.文章分3个方面简要介绍核磁共振波谱与成像技术在纳米尺度物质生物效应研究中的应用:(1)纳米尺度物质在生物组织及个体内的检测与分析;(2)纳米尺度物质与生物大分子相互作用的核磁共振波谱研究;(3)纳米尺度物质生物效应的核磁共振代谢组学研究.  相似文献   

13.
The use of fluorescent nanomaterials with good photostability and biocompatibility in live imaging of cells has gained increased attention. Even though several imaging techniques have been reported for mammalian cells, very limited literatures are available for nanomaterial based live imaging in plant system. We studied the uptake ability of two different nanomaterials, the highly photostable CdSe quantum dots and highly biocompatible FITC-labeled silica nanoparticles by rice seedlings which could provide greater opportunities for developing novel in vivo imaging techniques in plants. The effects of these nanomaterials on rice seed germination have also been studied for analyzing their phytotoxic effects on plants. We observed good germination of seeds in the presence of FITC-labeled silica nanoparticles whereas germination was arrested with quantum dots. The uptake of both the nanomaterials has been observed with rice seedlings, which calls for more research for recommending their safe use as biolabels in plants.  相似文献   

14.
It is already well established today that numerous materials form closed-cage structures, of which carbon fullerenes and nanotubes are a special case [1]. Inorganic fullerene-like nanoparticles (designated IF) and inorganic nanotubes (INT) have been produced by different routes and experimental techniques, achieving persistent growth of a variety of materials and structural wealth within them. The research in this area has focused on synthesizing new IF and INT materials and understanding their different properties as well as scaling up the synthetic process in order to make it suitable for industrial applications. In this review, the main synthetic procedures to obtain inorganic fullerene-like nanoparticles and nanotubes will be discussed alongside with the different mechanisms that affect the morphology of the final product. The main differences between the morphologies will be presented. Some general considerations relating the properties of the parent compound with the morphology of the product will be mentioned.  相似文献   

15.
In this paper, the atomic-scale three-dimensional structure of Pt nanoparticles were determined using high energy X-ray diffraction techniques and reverse Monte Carlo simulations. It was found that dendrimer encapsulated Pt nanoparticles are more ordered than those stabilized by long-chain alkanes. Furthermore, Pt nanoparticles measured in ambient dry conditions exhibit higher local atomic order compared to Pt nanoparticles measured in aqueous solutions. The atomic-scale structural information presented here can offer a more comprehensive understanding of the structure–property relationship for Pt nanoparticles and can be further used in the design of nanoparticles with improved properties.  相似文献   

16.
Biospeckle or dynamic speckle can be used as a method for analysing activity, biologic or not, from materials illuminated with laser beam. The Spatial Temporal Speckle (STS) contains data of time information of dynamic speckle and it is used as input for many techniques allowing the analysis of the activity which is being monitored. One question that rises from the manipulation of the STS is related with the information inside it, in particular, whether it is possible to access different frequency behaviors in the time series presented in the STS pattern. This study presents the Inertia Moment, the Wavelets based Entropy and the Cross-Spectrum analysis as approaches that can be used for evaluating the STS spectral content. In a simulation, STS lines have been created based on many frequencies of the fundamental harmonic. This was done for verifying as each method acts when analysing different frequencies, varying harmonics offset and amplitude. These techniques were applied to real database, to validate their action mechanism in real samples. The results present that all techniques were able to verify the spectral content of different harmonics. Inertia Moment was more efficient on analysing high frequencies, because it is a second order moment, being able to obtain more information from high variations on activity. Entropy and Cross-Spectrum, in turn, were better on differing lower frequencies. This was attributed to the convolution proccess, which is present in both methods, filtering high frequencies. Although, any of them returned informations on both high and low frequencies at the same time, they can be used simultaneously, since Entropy and Cross-Spectrum were complementary to Inertia Moment.  相似文献   

17.
The promising technological applications of colloids of CdSe nanoparticles in solid state devices is hampered due to issues related to their stoichiometry, agglomeration effects and core-shell relationship. Due to the short inelastic mean free path of core-level electrons, X-ray photoelectron spectroscopy is the most reliable method for analysis at the nanometer depth scale, and in conjunction with layer by layer ion beam erosion it can provide valuable information regarding distribution of elements along the depth of the sample. In this work, we address the issue of synthesis of CdSe nanoparticles and probing them by XPS and conventional techniques such as like transmission electron microscopy (TEM) and X-ray diffraction (XRD). Cd/Se input precursor ratio is varied to form colloidal TOP/TOPO capped CdSe nanoparticles. An optimum input precursor ratio is determined where stoichiometric yield, efficiently capped smallest sized (∼5 nm) CdSe nanoparticles with superior optical, structural and morphological properties are obtained. Electron diffraction and deconvolution of XPS-core-levels enables the identification of the different compositional regimes of CdSe nanocrystallites. For non-optimal precursor ratios, the presence of Cd- and Se-related oxides are observed. This multi-technique approach has enabled us to pictorially model the compositional, structural and morphological aspects of TOP/TOPO capped CdSe nanoparticles.  相似文献   

18.
In the last years, the study of Fe-based magnetic nanoparticles (MNP) has attracted increasing interest either for the physical properties shown by nanosized materials (electric and magnetic properties are strongly affected by dimension and surface effects) either for the different technological applications of these materials (catalysis, drug delivery, magnetic resonance imaging, contaminants removal from groundwater, new exchange coupled magnets, soft nanomagnets for high frequency applications, etc.). In this article, the results obtained in the synthesis and characterization of the Fe3O4 MNP is reported. The magnetite nanoparticles were synthesized by a modified Massart method. Structural characterization was performed using X-ray diffraction analysis and a complete morphological and dimensional study was carried out by means of Transmission Electron Microscopy, and a.c. magnetic susceptibility measured as a function of the frequency of the applied magnetic field. Diameters of the superparamagnetic Fe3O4 nanoparticles are ranging from 2 to 10 nm, as evidenced by all the techniques employed. The size distribution of the hydrated aggregates in solution has been obtained by quantitative analysis of the frequency dependence of the a.c. susceptibility. The mathematical approach adopted will be described and all the obtained results will be compared and discussed.  相似文献   

19.
Zinc oxide nanoparticles have been successfully prepared by a facile route involving the reaction of zinc sulphate heptahydrate and sodium hydroxide through drop-by-drop mixing synthesis-IA, instant mixing synthesis-IA and under the influence of microwave radiations. The synthesis under different reaction conditions played an important role and led to the formation of zinc oxide nanoparticles of different size and shapes. The synthesized nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The concentration dependent antimicrobial activity of synthesized ZnO nanoparticles was carried out. The photocatalytic activity was evaluated using the photodegradation of methylene blue (MB) dye under UV irradiation. Further, the optical properties of as-prepared ZnO nanoparticles were investigated by UV-vis spectrophotometry. The absence of surfactant led to a simple, cheap and fast method of synthesis of zinc oxide nanoparticles.  相似文献   

20.
Bidirectional ellipsometry has been developed as a technique for distinguishing among various scattering features near surfaces. The polarized angular dependence of out-of-plane light-scattering by the nanoparticles on wafer is calculated and measured according to Rayleigh limit. These calculations and measurements yield angular dependence of bidirectional ellipsometric parameters for out-of-plane scattering. The experimental data show good agreement with theoretical predictions for different diameter of nanoparticles. The results suggest that improvements for accuracy are possible to perform measurements of scattering features from nanoparticles. The angular dependence and the polarization of light scattered by nanoparticles can be used to determine the size of nanoparticulate contaminants on silicon wafers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号