首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
High-intensity focused ultrasound for the treatment of liver tumours   总被引:17,自引:0,他引:17  
High-intensity focused ultrasound (HIFU) has been investigated as a tool for the treatment of cancer for many decades, but is only now beginning to emerge as a potential alternative to conventional therapies. In recent years, clinical trials have evaluated the clinical efficacy of a number of devices worldwide. In Oxford, UK, we have been using the JC HIFU system (HAIFU Technology Company, Chongqing, PR China) in clinical trials since November 2002. This is the first report of its clinical use outside mainland China. The device is non-invasive, and employs an extracorporeal transducer operating at 0.8-1.6 MHz (aperture 12-15 cm, focal length 9-15 cm), operating clinically at Isp (free field) of 5-15 KWcm(-2). The aims of the trials are to evaluate the safety and performance of the device. Performance is being evaluated through two parallel protocols. One employs radiological assessment of response with the use of follow-up magnetic resonance imaging and microbubble-contrast ultrasound. In the other, histological assessment will be made following elective surgical resection of the HIFU treated tumours. Eleven patients with liver tumours have been treated with HIFU to date. Adverse events include transient pain and minor skin burns. Observed response from the various assessment modalities is discussed.  相似文献   

2.
High-intensity focused ultrasound (HIFU) has the potential to become a modality of treatment for a wide range of clinical conditions. HIFU enables non-invasive, selective ablation of tissues including tumors and punctured vessels. Another promising area of research within the field of therapeutic ultrasound is the application of HIFU to treat neurological disorders by selectively targeting the brain, spinal cord, or nerves. This paper provides an overview of the current applications of focused ultrasound in medicine with an emphasis on its use in the fields of neurology and neurosurgery.  相似文献   

3.
In this work, the activation of heat-sensitive trans-gene by high-intensity focused ultrasound (HIFU) in a tumor model was investigated. 4T1 cancer cells (2 x 10(6)) were inoculated subcutaneously in the hind limbs of Balb/C mice. The tumors were subsequently transducted on day 10 by intratumoral injection of a heat-sensitive adenovirus vector (Adeno-hsp70B-Luc at 2 x 10(8) pfu/tumor). On day 11, the tumors were heated to a peak temperature of 55, 65, 75, or 85 degrees C within 10-30 s at multiple sites around the center of the tumor by a 1.1- or 3.3-MHz HIFU transducer. Inducible luciferase gene expression was increased from 15-fold to 120-fold of the control group following 1.1-MHz HIFU exposure. Maximum gene activation (120-fold) was produced at a peak temperature of 65-75 degrees C one day following HIFU exposure and decayed to baseline within 7 days. HIFU-induced gene activation (75 degrees C-10 s) could be further improved by using a 3.3-MHz transducer and a dense scan strategy to 170-fold. Thermal stress, rather than nonthermal mechanical stress, was identified as the primary physical mechanism for HIFU-induced gene activation in vivo. Overall, these observations open up the possibility for combining HIFU thermal ablation with heat-regulated gene therapy for cancer treatment.  相似文献   

4.
高强聚焦超声(HIFU)无创外科   总被引:5,自引:0,他引:5       下载免费PDF全文
本文从简要回顾超声治疗的发展历史开始,重点介绍了90年代初在国际上兴起的HIFU无创外科技术及我国在该领域中的成就.文章继而对HIFU“切除”肿瘤的机理,治疗质量及其及发展前景做了讨论。  相似文献   

5.
本文从简要回顾超声治疗的发展历史开始,重点介绍了90年代初在国际上兴起的HIFU无创外科技术及我国在该领域中的成就.文章继而对HIFU“切除”肿瘤的机理,治疗质量及其及发展前景做了讨论.  相似文献   

6.
冯若 《应用声学》2001,20(2):38-42
本文从简要回顾超声治疗的发展历史开始,重要介绍了90年代初在国际上兴起的HIFU无创外科技术及我国在该领域中的成就。文章继而对HIFU“切除”肿瘤的机理,治疗质量及其发展前景做了讨论。  相似文献   

7.
This study evaluates the feasibility of using high intensity focused ultrasound (HIFU) for the treatment of hydatid cysts of the liver. HIFU ablation was carried out in 62 patients with echinococcosis of the liver. The mean age of patients was 40.76 ± 14.84 (range: 17–72 years). The effectiveness of the treatment was monitored in real-time by changes in the gray-scale, and by morphological studies, computed tomography, magnetic resonance imaging, and ultrasound.Criteria for evaluating the effectiveness of treatment in real time were outlines. Cytomorphological picture of destructive changes of parasitic elements was presented as well. Loss of embryonic elements of the parasite was observed at the subcellular level after HIFU-ablation and underlines the effectiveness of HIFU.  相似文献   

8.
A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration.  相似文献   

9.
Poor drug penetration through tumor tissue has emerged as a fundamental obstacle to cancer therapy. The aim of this study was to examine the ability of cavitation instigated by high-intensity focused ultrasound (HIFU) to increase convective transport of a model therapeutic in an in vitro tumor model. Cavitation activity was quantified by analyzing passively recorded acoustic emissions, and mass transfer was quantified using post-treatment image analysis of the distribution of a dye-labeled macromolecule. The strong correlation between cavitation activity and drug delivery suggests the potential for non-invasive treatment and monitoring.  相似文献   

10.
High-intensity focused ultrasound (HIFU) has been shown to provide an effective method for hemorrhage control of blood vessels in acute animal studies. The objective of the current study was to investigate the long-term effects of HIFU-induced hemostasis in punctured arteries. The femoral arteries ( approximately 2mm in diameter) of 25 adult anesthetized rabbits were surgically exposed, and either punctured and treated with HIFU (n=15), served as control (no puncture and no HIFU application: n=7), or were punctured and left untreated (n=3). Treated animals were allowed to recover, and examined and/or sacrificed on days 0, 1, 3, 7, 14, 28, and 60 after treatment to obtain ultrasound images and samples of blood and tissue. Hemostasis (arrest of bleeding) was achieved in all 15 of the HIFU-treated arteries. Eleven of the arteries were patent after HIFU treatment, and four arteries were occluded, as determined by Doppler ultrasound. The median HIFU application time to achieve hemostasis was 20s (range 7-55 s) for the patent arteries and 110 s (range 50-134 s) for the occluded arteries. In untreated animals, bleeding had not stopped after 120 s. One of the occluded arteries had reopened by day 14. No immediate or delayed re-bleeding was observed after HIFU treatment. Maximal blood flow velocities were similar in HIFU-treated patent vessels and control vessels. No significant difference in hematocrits was found between HIFU-treated and control groups at different time points after the procedure. Light microscopy observations of the HIFU-treated arteries showed disorganization of adventitia, and coagulation and thinning of the tunica media. The general organization of the adventitia and tunica media recovered to normal appearance within 28 days, with some thinning of the tunica media observed up to day 60. Neointimal hyperplasia was observed on days 14 and 28. The results show that HIFU can produce effective and long-term (up to 60 days) hemostasis of punctured femoral arteries while preserving normal blood flow and vessel wall structure in the majority of vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号