首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
仝志辉  刘汉涛  常建忠  安康 《物理学报》2012,61(2):24401-024401
对牛顿流体内溶解双颗粒在垂直管道中的沉降运动进行了直接数值模拟. 流体运动由守恒方程计算, 密度和黏性的变化考虑流场温度变化的影响, 通过积分粘性应力和压力获得颗粒的受力跟踪颗粒运动, 溶解引起的相变及其形状的变化由溶解潜热、溶解质量与分散相边界处的温度梯度的关系建立的方程决定. 通过颗粒和流体间相互的作用力和力矩及边界条件的施加实现相间耦合. 对双颗粒在等温流体无溶解条件和非等温流体溶解条件下的沉降过程进行了计算. 结果表明, 在一定雷诺数内, 热对流产生的颗粒尾迹处涡的脱落以及溶解引起的颗粒质量、颗粒表面形态的变化引起了颗粒的横向摆动, 并使颗粒沉降速度发生了变化.  相似文献   

2.
通过引入吸引力修正耗散粒子动力学(DPD)方法,实现流体和固体的相互吸引作用,模拟纳米喉道中的微尺度流动,探讨边界层的产生机理,结合微圆管实验,定量表征微纳米喉道中边界层的特征,明确微纳米喉道中边界层的影响因素.研究发现:分子尺度,热运动对速度影响很大;超过分子尺度,压差占主导作用.热运动使粒子在原位置振动,不改变粒子的整体移动方向.随着喉道半径的增大,泊肃叶流动的抛物线特征越来越明显.边界层厚度受压力梯度、喉道半径和流体粘度的影响.当压力梯度增大或流体粘度减小时,边界层厚度增大;当喉道半径减小时,边界层厚度先增大后减小.边界层厚度是导致非线性渗流特征的根本原因.随着边界层厚度增大,非线性渗流特征越来越明显.  相似文献   

3.
We integrate the lattice Boltzmann method (LBM) and immersed boundary method (IBM) to capture the coupling between a rigid boundary surface and the hydrodynamic response of an enclosed particle laden fluid. We focus on a rigid box filled with a Newtonian fluid where the drag force based on the slip velocity at the wall and settling particles induces the interaction. We impose an external harmonic oscillation on the system boundary and found interesting results in the sedimentation behavior. Our results reveal that the sedimentation and particle locations are sensitive to the boundary walls oscillation amplitude and the subsequent changes on the enclosed flow field. Two different particle distribution analyses were performed and showed the presence of an agglomerate structure of particles. Despite the increase in the amplitude of wall motion, the turbulence level of the flow field and distribution of particles are found to be less in quantity compared to the stationary walls. The integrated LBM-IBM methodology promised the prospect of an efficient and accurate dynamic coupling between a non-compliant bounding surface and flow field in a wide-range of systems. Understanding the dynamics of the fluid-filled box can be particularly important in a simulation of particle deposition within biological systems and other engineering applications.  相似文献   

4.
溶解与热对流对固体颗粒运动影响的直接数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
刘汉涛  仝志辉  安康  马理强 《物理学报》2009,58(9):6369-6375
对牛顿流体内溶解与热对流对单颗粒在垂直管道中的沉降运动进行了直接数值模拟.流体运动由守恒方程计算,密度和黏性的变化考虑流场温度变化的影响,通过积分黏性应力和压力获得颗粒的受力跟踪颗粒运动,溶解引起的相变及其形状的变化由溶解潜热、溶解质量与分散相边界处的温度梯度的关系建立的方程决定.通过颗粒和流体间相互的作用力和力矩及边界条件的施加实现相间耦合.分别模拟了颗粒在等温流体、热流体、冷流体及颗粒溶解四种情况下的沉降过程.结果表明,在一定雷诺数内,热对流产生的颗粒尾迹处涡的脱落以及溶解引起的颗粒表面形态的变化引起了颗粒的横向摆动,并使颗粒沉降速度发生了变化. 关键词: 溶解 热对流 颗粒两相流 直接数值模拟  相似文献   

5.
基于多松弛格子Boltzmann模型,对竖直细长微通道内颗粒自由沉降过程进行模拟,分析气体稀薄效应、初始位置以及颗粒间相互作用对微颗粒沉降特性的影响.研究表明:随Knudsen数增大,微通道内气体稀薄效应增强,颗粒表面气体滑移速度增大,气相流体有效粘度减小,颗粒相同运动状态下受到气体阻力相应减小,颗粒沉降平衡速度明显增大;不同初始位置颗粒沉降过程存在明显差异,初始位置偏离中心线颗粒将发生水平方向位移且呈振荡趋势,最终稳定于中心线平衡位置;在微尺度双颗粒沉降DKT现象过程中,气体稀薄效应影响颗粒运动特性,后颗粒跟随过程明显增长.  相似文献   

6.
菅永军  鄂学全 《中国物理》2004,13(8):1191-1200
Two-time scale perturbation expansions were developed in weakly viscous fluids to investigate surface wave motions by linearizing the Navier-Stokes equation in a circular cylindrical vessel which is subject to a vertical oscillation. The fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates a damping term and external excitation, was derived for the weakly viscid fluids. The condition for the appearance of stable surface waves was obtained and the critical curve was determined. In addition, an analytical expression for the damping coefficient was determined and the relationship between damping and other related parameters (such as viscosity, forced amplitude, forced frequency and the depth of fluid, etc.) was presented. Finally, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent.  相似文献   

7.
This paper deals with the study of the effect of MHD on thin films of a micropolar fluid. These thin films are considered for three different geometries, namely: (i) flow down an inclined plane, (ii) flow on a moving belt and (iii) flow down a vertical cylinder. The transformed boundary layer governing equations of a micropolar fluid and the resulting system of coupled non-linear ordinary differential equations are solved numerically by using shooting method. Numerical results were presented for velocity and micro-rotation profiles within the boundary layer for different parameters of the problem including micropolar fluid parameters, magnetic field parameter, etc., which are also discussed numerically and illustrated graphically.  相似文献   

8.
When submillimetric particles are confined in a fluid such that a compact cluster of particles lie above the clear fluid, particles will detach from the lower boundary of the cluster and form an unstable separation front giving rise to growing fingers of falling particles. We study this problem using both experiments and hybrid granular/fluid mechanics models. In the case of particles from 50 to 500 microns in diameter falling in air, we study the horizontal density fluctuations at early times: the amplitude of the density difference between two points at a certain horizontal distance grows as a power law of time. This happens up to a saturation corresponding to a power law of the distance. The way in which the correlation length builds up to this saturation also follows a power law of time. We show that these decompaction fronts in sedimentation problems follow a Family-Vicsek scaling, characterize the dynamic and Hurst exponent of the lateral density fluctuations, respectively z ∼ 1 and ζ ∼ 0.75, and show how the prefactors depend on the grain diameter. We also show from similar simulations with a more viscous and incompressible fluid, that this feature is independent of the fluid compressibility or viscosity, ranging from air to water/glycerol mixtures.  相似文献   

9.
Intrigued by our recent experimental work (H. Yamaguchi and X. D. Niu, J. Fluids Eng., 133 (2011), 041302), the present study numerically investigate the flow-structure interactions (FSI) of three rigid circular particles aligned moving in an inclined channel flow at intermediate Reynolds numbers by using a momentum-exchanged immersed boundary-lattice Boltzmann method. A "frog-leap" phenomenon observed in the experiment is successfully captured by the present simulation and flow characteristics and underlying FSI mechanisms of it are explored by examining the effects of the channel inclined angles and Reynolds numbers. It is found that the asymmetric difference of the vorticity distributions on the particle surface is the main cause of the "frog-leap" when particle moves in the boundary layer near the lower channel boundary.  相似文献   

10.
Numerical continuation is used to follow branches of steady doubly diffusive convection in a vertical slot driven by imposed horizontal temperature and concentration gradients. No-slip boundary conditions are used on the lateral walls; periodic boundary conditions with large spatial period are used in the vertical direction. A variety of different states, both spatially periodic and spatially localized, are identified and the profusion of the resulting solution branches is linked to a phenomenon known as homoclinic snaking.  相似文献   

11.
文采用基于四边形网格的分布式拉格朗日乘子/虚拟区域方法(DLM/FD method)对二维方槽内775个圆形颗粒在流体中的沉降过程进行了直接数值模拟。得到了颗粒流沉降过程中流体和颗粒速度和涡量分布、流场压力分布等流动细节,展示了颗粒在沉降过程中由于相间的相互作用以及颗粒间的作用,使得颗粒流在流场内形成大小不一的旋流区,颗粒回旋着沉降,同时颗粒的尾涡影响附近颗粒的运动.本文的结果说明分布式拉格朗日乘子/虚拟区域方法对模拟存在很多颗粒的悬浮体流动是可行的。  相似文献   

12.
陈木凤  李翔  牛小东  李游  Adnan  山口博司 《物理学报》2017,66(16):164703-164703
在磁场作用下,在磁流体里添加非磁性颗粒(non-magnetic particles,NPs),可以使得NPs形成不同的结构,操控NPs的运动从而影响磁流体的特性,这种应用逐渐受到了研究者的关注.为了更好地操控磁流体里NPs的运动,本文采用一种多物理模型研究在外加磁场作用下,磁流体中两个NPs沉降的运动过程.其中,用格子玻尔兹曼方法模拟磁流体的运动,外加磁场对磁流体的影响用一种自修正方法求解泊松方程,这个自修正方法可以使欧姆定律满足守恒定律.NPs之间的偶极干扰力采用偶极力模型,同时采用一种相对过渡平滑的共轭边界条件处理NPs与磁流体交界面的流固干扰以避免磁场密度过渡的突变.本文主要探究两个NPs在磁流体中的沉降,揭示磁场作用下NPs的相互干扰原理;同时,对控制NPs运动时的参数进行调节,得到NPs不同的运动轨迹,达到操控颗粒运动的目的.本研究可对NPs在磁流体中的应用提供定量的分析结果,对NPs在工业上的应用提供有力的理论支撑.  相似文献   

13.
This paper simulated the advection and diffusion behaviors of the moving magnetic fluid in the vessel in the high-gradient magnetic field using Navier–Stokes equations. The particles accumulation behavior and the streamlines and the contour of concentration are all affected by the susceptibility, intensity of magnetic field and its gradient, and the flow velocity and also by the difference in size of vessels. The typical accumulation behaves as a solid obstacle in the flow as result of the competing between magnetic and fluid drag forces, and gives rise to a rigidly bound core region followed by a wash away region near the vessel boundary under the condition of 10 mm vessel in width. While the vessel is near 1 mm in width, the magnetic force is exerted almost on the whole vessel area, the vortex is not seen, the wash away area disappears and the concentration changes in the whole vessel. The results of the analysis provide meaningful information on ferrofluid transport and stabilization for various magnetic drug targeting and the magnetic fluid sealing, and other use in industrial and medical fields.  相似文献   

14.
本文提出了一种基于内嵌边界法(IBM)的思想,在描述颗粒只有较少网格时能较为准确地计算气固多相流的模型.模型依据边界层理论,通过定义颗粒表面的速度分布函数来修正由于计算网格尺度大于边界层厚度所带来的误差.本文通过计算单颗粒绕流和单颗粒沉降的最终沉降速度并与实验进行比较验证了本文模型的准确性.  相似文献   

15.
With the goal to identify surface viscosity, this paper proposes the modelling of a shear flow within an annular channel whose floor is put in rotation while its two vertical cylindrical side walls are maintained stationary. The liquid surface at the top of the annular channel is covered by a layer of hydrophobic molecules. The flow is considered as permanent, axisymmetric and creeping. The ratio of the liquid depth to the outer radius is small enough (shallow flow) so that it is possible to develop a matched asymptotic model. In the rotating sub-phase, a core flow is therefore distinguished from the boundary layers along side walls. The modelling includes the possibility to take into account the impact of the radially-inwards molecular packing induced by centrifugation of the underlying bulk. More particularly, radial distribution of surface viscosity is taken into account via the transport equation for surface momentum. In this paper, the model by Mannheimer and Schechter [R.J. Mannheimer, R.S. Schechter, J. Colloid Interface Sci. 32 (2) (1970) 195] can be considered as revisited: a new integral formulation is made evident which enables a fair estimation of the Boussinesq number as well as a simple measurement of a stratified surface viscosity.  相似文献   

16.
Flow visualization of a near wall flow is of great importance in the field of biofluid mechanics in general and for studies of pathologic vessel enlargements (aneurysms) particularly. Wall shear stress (WSS) is one of the important hemodynamic parameters implicated in aneurysm growth and rupture. The WSS distributions in anatomically realistic vessel models are normally investigated by computational fluid dynamics (CFD). However, the results of CFD flow studies should be validated. The recently proposed Wall-PIV method was first applied in an enlarged transparent model of a cerebri anterior artery terminal aneurysm made of silicon rubber. This new method, called Wall-PIV, allows the investigation of a flow adjacent to transparent surfaces with two finite radii of curvature (vaulted walls). Using an optical method which allows the observation of particles up to a predefined depth enables the visualization solely of the boundary layer flow. This is accomplished by adding a specific molecular dye to the fluid which absorbs the monochromatic light used to illuminate the region of observation. The results of the Wall-PIV flow visualization were qualitatively compared with the results of the CFD flow simulation under steady flow conditions. The CFD study was performed using the program FLUENT®. The results of the CFD simulation were visualized using the line integral convolution (LIC) method with a visualization tool from AMIRA®. The comparison found a very good agreement between experimental and numerical results.  相似文献   

17.
A direct-forcing fictitious domain (DF/FD) method for the simulation of particulate flows is reported. The new method is a non-Lagrange-multiplier version of our previous DLM/FD code and is obtained by employing a discrete δ-function in the form of bi(tri-) function to transfer explicitly quantities between the Eulerian and Lagrangian nodes, as in the immersed boundary method. Due to the use of the collocation-point approach for the rigidity constraint and the integration over the particle domain, the Lagrangian nodes are retracted a little from the particle boundary. Our method in case of a prescribed velocity on the boundary is verified via the comparison to the benchmark results on the flow over a fixed cylinder in a wide channel and to our spectral-element results for a channel with the width of four cylinder diameters. We then verify our new method for the case of the particulate flows through various typical flow situations, including the sedimentation of a circular particle in a vertical channel, the sedimentation of a sphere in a vertical pipe, the inertial migration of a sphere in a circular Poiseuille flow, the behavior of a neutrally-buoyant sphere in Couette flow, and the rotation of a prolate spheroid in Couette flow. The accuracy and robustness of the new method are fully demonstrated, in particular for the case of relatively low Reynolds numbers and the neutrally-buoyant case.  相似文献   

18.
A.J. Roberts 《Physics letters. A》2008,372(10):1607-1611
Consider the flow of a thin layer of non-Newtonian fluid over a solid surface. I model the case where the viscosity depends nonlinearly on the shear-rate; power law fluids are an important example, but the analysis here is for general nonlinear dependence. The modelling allows for large changes in film thickness provided the changes occur over a relatively large enough lateral length scale. Modifying the surface boundary condition for tangential stress forms an accessible foundation for the analysis where flow with constant shear is a neutral critical mode, in addition to a mode representing conservation of fluid. Perturbatively removing the modification then constructs a model for the coupled dynamics of the fluid depth and the lateral momentum. For example, the results model the dynamics of gravity currents of non-Newtonian fluids when the flow is not creeping.  相似文献   

19.
毛威  郭照立  王亮 《物理学报》2013,62(8):84703-084703
采用格子Boltzmann方法模拟了在热对流条件下的颗粒沉降问题, 在研究单颗粒在等温流体、热流体和冷流体中运动的基础上, 进一步模拟了两个不同温度的颗粒在流体中的沉降.结果表明:两等温颗粒的沉降方式与雷诺数Re以及格拉晓夫数Gr密切相关, 而两不同温度的颗粒与两等温颗粒的沉降规律有显著不同.无论初始位置如何, 冷颗粒最终总位于热颗粒下方运动, Re较大时, 发生连续的拖曳、接触现象, 而Re较小时, 冷颗粒会以较大的沉降速度远离热颗粒. 关键词: 格子Boltzmann方法 颗粒沉降 热对流  相似文献   

20.
A mean field approach is used to estimate the energy dissipation during the homogeneous sedimentation or the particulate fluidization of non Brownian hard spheres in a concentrated suspension of infinite extent. Depending on inertial screening and the range of the hydrodynamic interactions, the effective buoyancy force is determined either from the average suspension density in a Stokes flow or from the fluid density in the turbulent flow regime. An energy balance then yields a settling or fluidization law depending on the particle Reynolds number in reasonable agreement with the Richardson and Zaki correlation and recent experimental results for particle settling or fluidization. We further estimate the energy dissipation in the turbulent boundary layers around the particles to precise the Reynolds number dependence of the hindered settling function in the intermediate flow regime. Received 22 February 1999 and Received in final form 14 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号