首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Physics letters. A》2020,384(9):126186
The phase diagrams and magnetic properties of double perovskite Sr2CrIrO6 have been studied by using Monte Carlo simulation based on the heat bath algorithm. The ground-state diagrams of the compound Sr2CrIrO6 have been calculated for different combinations of system parameters. The diagrams obtained are very rich and they give an idea of all the most stable configurations. The effects of the exchange interactions and the crystal field on the phase diagrams and magnetic properties of the system have been examined. A number of interesting phenomena have been observed such as the compensation temperature, the first and second order phase transitions, the critical triple point and the terminal critical point.  相似文献   

2.
The magnetic properties of tetragonal structure of stoichiometric NiMn alloy is investigated using density functional theory within the local spin density approximation. The system studied here, is a free standing film. The effect of thickness and epitaxial strain on the magnetic and structural properties is examined. It is found that while the magnetic moments of Mn surface atoms vary depending on the number of layers being odd (3.60 μB) or even (3.55 μB) the magnitude of the magnetic moment for surface Ni atoms is constant (0.11 μB). By applying epitaxial strain on the slabs, it was observed, for the first time, that the magnetic phase of NiMn films changes from “A-type-like” ferrimagnetic for compressive strains to “G-type-like” ferrimagnetic for tensile strains.  相似文献   

3.
4.
5.
6.
7.
8.
S. Nazir 《Physics letters. A》2019,383(16):1977-1982
Interfacial magnetism and magnetic anisotropy constant (Ki) in Co/MgO heterostructure have been studied using ab-initio density functional calculations. It is found that interfacial Co spin magnetic moment shows a strong interdependence on Co-O bond lengths and a reasonable spin-polarization of ~80% is established as a function of Co layers. Our results revealed a saturated positive (out-of-plane) Ki of +2.80 mJ/m2 at ≥12 Co layers (~1.6 nm Co thickness), which is associated with orbital magnetic moment difference in [100] and [001] direction along with a strong hybridization between dxy and dx2?y2 orbitals through orbital angular momentum operator Lz?. Furthermore, it is shown that the Ki magnitude almost remains constant and weakens in the case of under- and over-oxidations in the interfacial MgO and Co layers, respectively. Interestingly, Ki improved for oxygen migrated interface due to enhanced dxy and dx2?y2 orbitals coupling. The disordered interfaces stability is checked by analyzing the formation energy. Hence, the present findings disclose that the higher Co thickness in ordered Co/MgO structure supports to out-of-plane [001] (positive) Ki, which could be useful for its technological implementation in high-density magnetic data storage devices with high thermal stability.  相似文献   

9.
High pressure can effectively control the phase transition of MoTe2 in experiment, but the mechanism is still unclear. In this work, we show by first-principles calculations that the phase transition is suppressed and 1T phase becomes more stable under high pressure, which originates from the pressure-induced change of the interlayer band occupancies near the Fermi energy. Specifically, the interlayer states of 1T phase tend to be fully occupied under high pressure, while they keep partially occupied for the Td phase. The increase of the band occupancies makes the 1T phase more favorable in energy and prevents the structure changing from 1T to Td phase. Moreover, we also analyze the superconductivity under high pressure based on BCS theory by calculating the density of states and phonon spectra. Our results may shed some light on understanding the relationship between the interlayer band occupancy and crystal stability of MoTe2 under high pressures.  相似文献   

10.
11.
The magnetic permeability of materials at optical frequencies is usually suggested in the literature to be μ=1. In this case one cannot expect to measure the magnetic second order phase transition at optical frequencies. The main novel idea of this paper is that the magnetic permeability μ is not equal to 1 for optical frequency and a phase transition of magnetism was measured experimentally with an optical frequency. In particular, this work presents the detection of a magnetic second order phase transition in nickel with temperature and at different pressures, by reflectivity measurements at an optical frequency. Based on our experiments the magnetic permeability is calculated as a function of temperature for pressures of 0.3, 5 and 10 GPa attained in a diamond anvil cell (DAC).  相似文献   

12.
13.
14.
15.
The ground-state phases of two-dimensional spin-2 Bose–Einstein condensate with Rashba spin–orbit coupling are studied. For the equal strengths of the density-density interaction and the spin-exchange interaction, we classify the ground-state phases into four types of stable phases with spin–orbit coupling and spin singlet-pairing interaction in momentum space, i.e., the ring phase, the stripe phase, the triangular phase and the square phase. With increasing the spin–orbit coupling strength, the system undergoes a sequence phase transitions from the ring phase to the stripe phase, and to the square phase for the attractive spin singlet-pairing interaction (c2<0), and the system undergoes a sequence phase transitions from the ring phase to the stripe phase, to the triangular phase, and to the square phase for the repulsive spin singlet-pairing interaction (c2>0).  相似文献   

16.
17.
The effect of bilayer repeats (N) on the static and dynamic magnetic properties of Co/Ni multilayers was investigated. The effective perpendicular magnetic anisotropy constant of multilayers drops from 1.08×106 erg/cm3 to 0.78×106 erg/cm3 with N increasing from 5 to 11. For Co/Ni multilayers with N7, sharp magnetization switching was observed. In contrast, Co/Ni multilayers with N9 have a long tail in the hysteresis loop. Ferromagnetic resonance measurements show that intrinsic Gilbert damping changes from 0.021 to 0.016 with increase in N and is inversely proportional to N. This study provides a deep understanding and effective control of magnetic properties of Co/Ni multilayers for spintronics devices.  相似文献   

18.
19.
《Physics letters. A》2020,384(24):126454
Previous theoretical studies show that the spin current in spin-orbit coupled systems can be effectively conserved. In this study, we show that in the presence of an external magnetic field B perpendicular to the surface without causing Landau levels, the spin-Hall conductivity, including the conventional spin and spin-torque Hall currents exhibit an interesting symmetry, σxyc(B)=σxyc(B) valid for k-linear and k-cubic Rashba systems. The phenomenon where the electric field generated spin z component is unaltered under BB is attributed to the fact that the spin precession is locked in spin-orbit coupled systems. The perpendicular magnetic field generates spin x and y components, which are linear to B, and thus, there is no time-reversal symmetry. This result provides evidence for the detection of the bulk spin-Hall current. Furthermore, the applied magnetic field breaks the degenerate point of the two-band model, and the resulting spin-Hall conductivity does not vanish even for systems with linear momentum, which implies that the Berry phase is not the principal mechanism in k-linear systems. The non-zero charge-Hall conductivity generated by the perpendicular magnetic field is discussed here.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号