首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Unsteady axial flows of second grade fluids with generalized fractional constitutive equation in a circular cylinder are studied. Flows are generated by a time-dependent pressure gradient in the axial direction, an external magnetic field perpendicular on the flow direction and by the cylinder motion. Two different problems are analyzed; one in which the cylinder velocity supports a shock at the instant t = 0 and another in which the cylinder motion is a translation with time-dependent velocity along the axis of cylinder. The generalized fractional constitutive equation of second grade fluid is described by the Caputo time-fractional derivative. Analytical solutions for the velocity field are obtained by using the Laplace transform with respect to time variable and the finite Hankel transform of order zero with respect to the radial coordinate. The influence of the fractional parameter of Caputo derivative on the fluid velocity has been studied by numerical simulations and graphical illustrations. It is found that the fractional fluid flows are faster than the ordinary second grade fluid.  相似文献   

2.
Unsteady laminar flows and heat transfer of n-immiscible fractional Maxwell fluids in a channel are investigated under influence of time-dependent pressure gradient. The isothermal channel walls have translational motions in their planes with time-dependent velocities. Governing equations of the mathematical model are based on the generalized constitutive equations for shear stress and thermal flux described by the time-fractional Caputo derivative. Analytical and semi-analytical solutions for velocity, shear stress, and temperature fields are obtained by using finite sine-Fourier and Laplace transforms. In the case of semi-analytical solutions, the inverse Laplace transforms are obtained numerically by employing the Talbots algorithms. Using the software Mathcad, numerical calculations have carried out and results are presented in graphical illustrations in order to analyze the memory effects on the fluid temperature and motion. It is found that in fluids with thermal memory the heat transfer is slower compared with the ordinary fluid, while the fractional velocity parameters act as braking/accelerating factors of the fluids.  相似文献   

3.
Unsteady free convection flows of viscous fluids over a vertical circular cylinder are investigated by taking in consideration thermal and mass stratification and the thermal memory effects. The mathematical model of thermal transport is based on the fractional generalized Fourier's law for thermal flux with the kernel of power-law kind. In this model the histories of the temperature gradient influence the thermal and mass transport process and the fluid motion. On the cylinder's surface the temperature (or the thermal flux) and solute concentration are constant. Solutions in the transformed domain for the perturbation temperature and concentration and fluid velocity are determined using the Laplace transform coupled with the classical method for the ordinary non-homogeneous differential equations. The inverse Laplace transforms are obtained numerically by employing the Stehfest's algorithm. Solutions for the case corresponding to classical Fourier's law are obtained as particular case of general solutions by taking the memory parameter equal to zero. The influence of the thermal memory and of thermal and mass stratifications is numerically and graphically analyzed by using the software Mathcad 15.  相似文献   

4.
This paper presents an analysis of unsteady flow of incompressible fractional Maxwell fluid filled in the annular region between two infinite coaxial circular cylinders. The fluid motion is created by the inner cylinder that applies a longitudinal time-dependent shear stress and the outer cylinder that is moving at a constant velocity. The velocity field and shear stress are determined using the Laplace and finite Hankel transforms. Obtained solutions are presented in terms of the generalized G and R functions. We also obtain the solutions for ordinary Maxwell fluid and Newtonian fluid as special cases of generalized solutions. The influence of different parameters on the velocity field and shear stress is also presented using graphical illustration. Finally, a comparison is drawn between motions of fractional Maxwell fluid, ordinary Maxwell fluid and Newtonian fluid.  相似文献   

5.
Heat transfer in a time-dependent flow of incompressible viscoelastic Maxwell fluid induced by a stretching surface has been investigated under the effects of heat radiation and chemical reaction. The magnetic field is applied perpendicular to the direction of flow. Velocity, temperature, and concentration are functions of z and t for the modeled boundary-layer flow problem. To have a hereditary effect, the time-fractional Caputo derivative is incorporated. The pressure gradient is assumed to be zero. The governing equations are non-linear, coupled and Boussinesq approximation is assumed for the formulation of the momentum equation. To solve the derived model numerically, the spatial variables are discretized by employing the finite element method and the Caputo-time derivatives are approximated using finite difference approximations. It reveals that the fractional derivative strengthens the flow field. We also observe that the magnetic field and relaxation time suppress the velocity. The lower Reynolds number enhances the viscosity and thus motion weakens slowly. The velocity initially decreases with increasing unsteadiness parameter δ. Temperature is an increasing function of heat radiation parameter but a decreasing one for the volumetric heat absorption parameter. The increasing value of the chemical reaction parameter decreases concentration. The Prandtl and Schmidt numbers adversely affect the temperature and concentration profiles respectively. The fractional parameter changes completely the velocity profiles. The Maxwell fluids modeled by the fractional differential equations flow faster than the ordinary fluid at small values of the time t but become slower for large values of the time t.  相似文献   

6.
A novel finite volume method is developed to investigate the axisymmetric convection flow and heat transfer of fractional viscoelastic fluid past a vertical cylinder. Fractional cylindrical governing equations are formulated by fractional Maxwell model and generalized Fourier's law. The velocity slip and temperature jump boundary conditions are considered across the fluid-solid interface. Numerical results are validated by exact solutions of special case with source terms. The effects of fractional derivative parameter and boundary condition parameters on flow and heat transfer characteristics are discussed. The viscoelastic fluid performs evident shear thickening property in the fractional Maxwell constitutive relation. Moreover, the boundary condition parameters have remarkable influence on velocity and temperature distributions.  相似文献   

7.
Natural convection flows of an incompressible Newtonian fluid inside a circular cylinder are studied. The heat transfer process is described by a generalized fractional constitutive equation for the thermal flux-temperature gradient. Caputo time-fractional derivative operator, which provides the damping of thermal flux, is considered into the studied model.Analytical solutions to the fluid temperature, thermal flux, fluid velocity and volume flow rate are obtained with the integral transforms method (Laplace transform and finite Hankel transform).Temperature behaviors for small and large values of the time t, as well as the post-transient and transient velocity components are determined. The influence of the memory parameter (the order of the time-fractional derivative) on the temperature, thermal flux, velocity and the volume flow rate is numerically and graphically studied.  相似文献   

8.
M. Irfan  M. Khan  W.A. Khan  M. Ayaz 《Physics letters. A》2018,382(30):1992-2002
Nanofluids are forthcoming new generation heat transfer fluids, which have been scrutinized precisely, in current years. Thermophysical assets of these fluids have noteworthy impact on their heat transfer features. In this current investigation a mathematical relation for two dimensional (2D) flow of magnetite Maxwell nanofluid influenced by a stretched cylinder is established. To visualize the stimulus of Brownian moment and thermophoresis phenomena on Maxwell fluid Buongiorno's relation has been considered. Moreover, heat sink/source and convective condition are also presented for heat transport mechanism. The homotopic scheme has been developed for the solutions of nonlinear ordinary differential equations (ODEs). The achieved outcomes are planned and consulted in aspects for somatic parameters. It is noteworthy that the velocity of Maxwell fluid display conflicting performance for curvature parameter and Deborah number. It is also reported that the liquid velocity decays for magnetic parameter, whereas the nanoliquid temperature and concentration field enhance for magnetic parameter. Furthermore, the liquid temperature intensifies for the progressive values of thermophoresis parameter and Brownian motion. Additionally, endorsement of current significances is organized via benchmarking with earlier famous limiting situations and we pledge a marvelous communication with these outcomes.  相似文献   

9.
This theoretical investigation aims to highlight the unsteady freely convective fractional motion of a Jeffery fluid near an infinite vertical plate. The additional effects of ramped velocity condition, Newtonian heating, magnetohydrodynamics (MHD), and nonlinear radiative heat flux are also examined. A system of fractional order partial differential equations is established by choosing Caputo-Fabrizio fractional derivative as a foundation. Laplace transformation followed by an adequate choice of unit-less parameters is executed to solve the subsequent ordinary differential equations. Stehfest’s and Zakian’s numerical algorithms are invoked to find and justify the inverse Laplace transform of velocity and shear stress. Temperature and velocity gradients are evaluated at the wall to effectively probe the rate of heat transfer and shear stress. In this regard, numerical computations of Nusselt number and shear stress for several inputs of connected parameters are tabulated. Furthermore, graphical elucidations of velocity and temperature profiles are provided to observe the rise and fall subjected to variation in several parameters. Additionally, the velocity profile for both ramped boundary condition and constant boundary condition is analyzed to get a deep insight into the physical phenomenon of the considered problem. Finally, a comparative analysis between Jeffery fluid and second grade fluid is carried out for both factional and ordinary cases, and it is determined that Jeffery fluids exhibit rapid motion in both cases.  相似文献   

10.
Generally speaking, rheological properties of materials are specified by their so-called constitutive equations. The simplest constitutive equation for a fluid is a Newtonian one, on which the classical Navier-Stokes theory is based. The mechanical behavior of many fluids is well described by this theory. However, there are many rheologically compli- cated fluids such as polymer solutions, blood and heavy oils which are inadequately de- scribed by a Newtonian constitutive equation that does …  相似文献   

11.
Peristaltic motion induced by a surface acoustic wave of a viscous, compressible and electrically conducting Maxwell fluid in a confined parallel-plane microchannel through a porous medium is investigated in the presence of a constant magnetic field. The slip velocity is considered and the problem is discussed only for the free pumping case. A perturbation technique is employed to analyze the problem in terms of a small amplitude ratio. The phenomenon of a “backward flow” is found to exist in the center and at the boundaries of the channel. In the second order approximation, the net axial velocity is calculated for various values of the fluid parameters. Finally, the effects of the parameters of interest on the mean axial velocity, the reversal flow, and the perturbation function are discussed and shown graphically. We find that in the non-Newtonian regime, there is a possibility of a fluid flow in the direction opposite to the propagation of the traveling wave. This work is the most general model of peristalsis created to date with wide-ranging applications in biological, geophysical and industrial fluid dynamics.  相似文献   

12.
Unsteady flows of two immiscible Maxwell fluids in a rectangular channel bounded by two moving parallel plates are studied. The fluid motion is generated by a time-dependent pressure gradient and by the translational motions of the channel walls in their planes. Analytical solutions for velocity and shear stress fields have been obtained by using the Laplace transform coupled with the finite sine-Fourier transform. These analytical solutions are new in the literature and the method developed in this paper can be generalized to unsteady flows of n-layers of immiscible fluids. By using the Laplace transform and classical method for ordinary differential equations, the second form of the Laplace transforms of velocity and shear stress are determined. For the numerical Laplace inversion, two accuracy numerical algorithms, namely the Talbot algorithm and the improved Talbot algorithm are used.  相似文献   

13.
The purpose of the present paper is to investigate the flow and heat transfer of a double fractional Maxwell fluid with a second order slip model. The fractional governing equations are solved numerically by using the finite difference method. By comparing the analytical solutions of special boundary conditions, the validity of the present numerical method is examined. The effects of the two slip parameters and the fractional parameters on the velocity and temperature distribution are presented graphically and discussed. The results reveal that the fractional Maxwell fluid exhibits a stronger viscosity or elasticity for different fractional parameters, and the oscillation phenomenon will gradually decrease as expected with an increase in slip parameters.  相似文献   

14.
The aim of this paper is to establish the analytical solutions corresponding to two types of unsteady flows of fractional Maxwell fluid in a duct of rectangular cross-section. The fractional calculus approach is used in solving the problems. With the help of the methods of separation of variables and Laplace transforms, the expressions for the velocity field and the volume flux are presented under series forms in terms of the generalized G functions. Similar solutions for Newtonian and ordinary Maxwell fluids, performing the same motions, are also obtained as the limiting cases of our solutions. Furthermore, the influence of pertinent parameters on the flows is delineated and appropriate conclusions are drawn.  相似文献   

15.
The transient electro-osmotic flow of a generalized Maxwell fluid with fractional derivative in a narrow capillary tube is examined. With the help of an integral transform method, analytical expressions are derived for the electric potential and transient velocity profile by solving the linearized Poisson-Boltzmann equation and the Navier-Stokes equation. It was shown that the distribution and establishment of the velocity consists of two parts, the steady part and the unsteady one. The effects of relaxation time, fractional derivative parameter, and the Debye-Hückel parameter on the generation of flow are shown graphically and analyzed numerically. The velocity overshoot and oscillation are observed and discussed.  相似文献   

16.
In both the oil reservoir engineering and seepage flow mechanics, heavy oil with relaxation property shows non-Newtonian rheological characteristics. The relationship between shear rate g& and shear stress t is nonlinear. Because of the relaxation phenomena of heavy oil flow in porous media, the equation of motion can be written as[1] 2,rrvpqkppqtrrtll秏骣+=-+琪抖桫 (1) where lv and lp are velocity relaxation and pressure retardation times. For most porous media, the above motion equation (1)…  相似文献   

17.
This article reports the simultaneous properties of variable conductivity and chemical reaction in stagnation point flow of magneto Maxwell nanofluid.The Buongiorno's theory has been established to picture the inducement of Brownian and thermophrotic diffusions effects.Additionally,the aspect of heat sink/source is reported.The homotopic analysis method(HAM) has been worked out for the solution of nonlinear ODEs.The behavior of inferential variables on the velocity,temperature,concentration and local Nusselt number for Maxwell nanofluid are sketched and discussed.The attained outcomes specify that both the temperature and concentration of Maxwell fluid display analogous behavior,while the depiction of Brownian motion is quite conflicting on both temperature and concentration fields.It is further noted that the influence of variable thermal conductivity on temperature field is similar to that of Brownian motion parameter.Moreover,for the confirmation of our study comparison tables are reported.  相似文献   

18.
We develop a numerical method for the coupled motion of Navier–Stokes flow with an elastic interface of zero thickness which exerts tension and bending forces on the fluid. The interface motion is made partially implicit by approximating a backward Euler step in the high wavenumbers as in the small scale decomposition method of Hou, Lowengrub and Shelley. This modified step is combined with the method of Beale and Layton [J.T. Beale, A.T. Layton, A velocity decomposition approach for moving interfaces in viscous fluids, J. Comput. Phys. 228 (2009) 3358–67]; the fluid velocity is found by computing the Stokes velocity and a more regular remainder. The resulting scheme is second order in space and first order in time; it can be made second order in time by extrapolation. The discontinuities in the pressure and velocity gradient are preserved. The partially implicit method allows much larger time steps than an explicit method with negligible added effort. The formulas in the Fourier transform for the implicit approximation in high wavenumbers are similar to those derived in Hou and Shi [T.Y. Hou, Z. Shi, An efficient semi-implicit immersed boundary method for the Navier–Stokes equations, J. Comput. Phys. 227 (2008) 9138–69] in a different context.  相似文献   

19.
20.
谭文长 《中国物理》2006,15(11):2644-2650
Stokes' first problem has been investigated for a Maxwell fluid in a porous half-space for gaining insight into the effect of viscoelasticity on the start-up flow in a porous medium. An exact solution was obtained by using the Fourier sine transform. It was found that at large values of the relaxation time the velocity overshoot occurs obviously and the system exhibits viscoelastic behaviours. On the other hand, for short relaxation time the velocity overshoot disappears and the system exhibits viscous behaviours. A critical value of the relaxation time was obtained for the emergence of the velocity overshoot. Furthermore, it was found that the velocity overshoot is caused by both the viscoelasticity of the Maxwell fluid and the Darcy resistance resulting from the structure of the micropore in the porous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号