首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronary vessel wall magnetic resonance (MR) imaging is important for heart disease diagnosis but often suffers long scan time. Compressed sensing (CS) has been previously used to accelerate MR imaging by reconstructing an MR image from undersampled k-space data using a regularization framework. However, the widely used regularizations in the current CS methods often lead to smoothing effects and thus are unable to reconstruct the coronary vessel walls with sufficient resolution. To address this issue, a novel block-weighted total variation regularization is presented to accelerate the coronary vessel wall MR imaging. The proposed regularization divides the image into two parts: a region-of-interest (ROI) which contains the coronary vessel wall, and the other region with less concerned features. Different penalty weights are given to the two regions. As a result, the small details within ROI do not suffer from over-smoothing while the noise outside the ROI can be significantly suppressed. Results with both numerical simulations and in vivo experiments demonstrated that the proposed method can reconstruct the coronary vessel wall from undersampled k-space data with higher qualities than the conventional CS with the total variation or the edge-preserved total variation.  相似文献   

2.
In photoacoustic imaging (PAI), reconstruction from sparse-view sampling data is a remaining challenge in the cases of fast or real-time imaging. In this paper, we present our study on a total variation based gradient descent (TV-GD) algorithm for sparse-view PAI reconstruction. This algorithm involves the total variation (TV) method in compressed sensing (CS) theory. The objective function of the algorithm is modified by adding the TV value of the reconstructed image. With this modification, the reconstructed image could be closer to the real optical energy distribution map. Additionally in the proposed algorithm, the photoacoustic data is processed and the image is updated individually at each detection point. In this way, the calculation with large matrix can be avoided and a more frequent image update can be obtained. Through the numerical simulations, the proposed algorithm is verified and compared with other reconstruction algorithms which have been widely used in PAI. The peak signal-to-noise ratio (PSNR) of the image reconstructed by this algorithm is higher than those by the other algorithms. Additionally, the convergence of the algorithm, the robustness to noise and the tunable parameter are further discussed. The TV-based algorithm is also implemented in the in vitro experiment. The better performance of the proposed method is revealed in the experiments results. From the results, it is seen that the TV-GD algorithm may be a practical and efficient algorithm for sparse-view PAI reconstruction.  相似文献   

3.
Ren W  Zhang C  Mu T  Dai H 《Optics letters》2012,37(13):2580-2582
The dispersion effect of birefringent material results in spectrally varying Nyquist frequency for the Fourier transform spectrometer based on birefringent prism. Correct spectral information cannot be retrieved from the observed interferogram if the dispersion effect is not appropriately compensated. Some methods, such as nonuniform fast Fourier transforms and compensation method, were proposed to reconstruct the spectrum. In this Letter, an alternative constrained spectrum reconstruction method is suggested for the stationary polarization interference imaging spectrometer (SPIIS) based on the Savart polariscope. In the theoretical model of the interferogram, the noise and the total measurement error are included, and the spectrum reconstruction is performed by using the constrained optimal linear inverse methods. From numerical simulation, it is found that the proposed method is much more effective and robust than the nonconstrained spectrum reconstruction method proposed by Jian, and provides a useful spectrum reconstruction approach for the SPIIS.  相似文献   

4.
基于压缩传感的MRI图像重构利用图像稀疏的先验知识能从很少的投影值重构原图像。目前MRI重构算法只利用MRI图像稀疏性表示或只利用基于其局部光滑性的先验知识,重构效果不理想。针对此问题,结合两种先验知识,提出一种基于联合正则化及压缩传感的MRI图像重构方法。利用块坐标下降法将求解联合正则化问题转化为交替求解二次凸优化、稀疏正则化和全变差正则化三个简单的优化问题。并提出分别采用共轭梯度法、二元自适应收缩法以及梯度下降法对以上优化问题求解。实验结果表明,该算法重构效果比现有算法有明显地提高。  相似文献   

5.
Many reconstruction algorithms are being proposed for parallel magnetic resonance imaging (MRI), which uses multiple coils and subsampled k-space data, and a quantitative method for comparison of algorithms is sorely needed. On such images, we compared three methods for quantitative image quality evaluation: human detection, computer detection model and a computer perceptual difference model (PDM). One-quarter sampling and three different reconstruction methods were investigated: a regularization method developed by Ying et al., a simplified regularization method and an iterative method proposed by Pruessmann et al. Images obtained from a full complement of k-space data were also included as reference images. Detection studies were performed using a simulated dark tumor added on MR images of fresh bovine liver. Human detection depended strongly on reconstruction methods used, with the two regularization methods achieving better performance than the iterative method. Images were also evaluated using detection by a channelized Hotelling observer model and by PDM scores. Both predicted the same trends as observed from human detection. We are encouraged that PDM gives trends similar to that for human detection studies. Its ease of use and applicability to a variety of MRI situations make it attractive for evaluating image quality in a variety of MR studies.  相似文献   

6.
An image formation framework for ultrasound imaging from synthetic transducer arrays based on sparsity-driven regularization functionals using single-frequency Fourier domain data is proposed. The framework involves the use of a physics-based forward model of the ultrasound observation process, the formulation of image formation as the solution of an associated optimization problem, and the solution of that problem through efficient numerical algorithms. The sparsity-driven, model-based approach estimates a complex-valued reflectivity field and preserves physical features in the scene while suppressing spurious artifacts. It also provides robust reconstructions in the case of sparse and reduced observation apertures. The effectiveness of the proposed imaging strategy is demonstrated using experimental data.  相似文献   

7.
方晟  郭华 《中国物理 B》2014,(5):534-540
The relatively long scan time is still a bottleneck for both clinical applications and research of magnetic resonance imaging. To reduce the data acquisition time, we propose a novel fast magnetic resonance imaging method based on parallel variable-density spiral acquisition, which combines undersampling optimization and nonlocal total variation reconstruction.The undersampling optimization promotes the incoherence of resultant aliasing artifact via the "worst-case" residual error metric, and thus accelerates the data acquisition. Moreover, nonlocal total variation reconstruction is utilized to remove such an incoherent aliasing artifact and so improve image quality. The feasibility of the proposed method is demonstrated by both numerical phantom simulation and in vivo experiment. The experimental results show that the proposed method can achieve high acceleration factor and effectively remove an aliasing artifact from data undersampling with well-preserved image details. The image quality is better than that achieved with the total variation method.  相似文献   

8.
烟羽断层重建质量受两方面条件限制:其中一个限制条件是遥感设备的时间分辨率。以往的研究多使用多轴差分吸收光谱仪(MAX-DOAS)进行CT重建,受采集数据速度的限制,重建图像的时间分辨率较低。另一个限制条件是,采集到的数据量有限,是典型的不完全角度重建。过去多使用代数迭代重建算法或统计迭代重建算法,重建图像受测量误差的影响比较大,分辨率较低且伪影较多。构造了基于成像差分吸收光谱技术(IDOAS)的光谱数据采集系统,与多轴差分吸收光谱仪构造的系统相比,数据采集的时间分辨率提高了160多倍,基本解决了时间分辨率的问题。提出了一种基于压缩感知理论和低三阶导数模型的烟羽断层重建算法--投影凸函数集低三阶导数法,简称为POCS-LTD。在投影的过程中,使用代数重建算法使重建图像符合投影方程;在全变分迭代的过程中使用了优化算法,将低三阶导数模型的全变分归一化值作为优化算法的迭代方向,前次迭代运算结果与本次投影运算的差值的模作为迭代步长。对重建算法进行了数值模拟,并以重建图像的接近度和一致性相关因子为指标,对重建结果进行了分析。数值模拟表明,算法具有良好的抗误差能力,与传统的低三阶导数法相比,本文提出的算法将重建接近度减小了80%以上。使用烟羽数据采集系统进行了外场实验,用POCS-LTD算法对外场实验的数据进行了烟羽重建,重建图像显示烟羽图像清晰,伪影得到了较好的抑制。介绍的烟羽断层数据采集系统和烟羽断层重建算法,提高了烟羽断层重建图像的时间分辨率,减少了重建图像的伪影,扩大了光谱测量技术的应用范围。  相似文献   

9.
鬼成像是一种能够透过大雾等恶劣环境的成像技术。针对传统鬼成像重建图像存在噪声较多、图像对比度较低等问题,将非局部广义全变分方法用于鬼成像的图像重建之中,提出基于非局部广义全变分的计算鬼成像重建方法。所提方法构造了一种非局部相关性权重设计梯度算子,将其代入全变分重建算法中,使得重建的图像能有效去除噪声的同时实现细节较好的还原。首先在不同条件下进行仿真模拟,得到所提方法的峰值信噪比相对其他方法提升1 dB左右,且具有更好的主观视觉效果,进而设计并搭建实验平台对算法的有效性进行验证,实验结果证明了所提方法在去除噪声和细节重建等方面的优越性。  相似文献   

10.
In this paper we study constrained variational problems in one independent variable defined on the space of integral curves of a Frenet system in a homogeneous space G/H. We prove that if the Lagrangian is G-invariant and coisotropic then the extremal curves can be found by quadratures. Our proof is constructive and relies on the reduction theory for coisotropic optimal control problems. This gives a unified explanation of the integrability of several classical variational problems such as the total squared curvature functional, the projective, conformal and pseudo-conformal arc-length functionals, the Delaunay and the Poincaré variational problems.  相似文献   

11.
Fluorescence diffuse optical tomography (FDOT) is a computationally demanding imaging problem. The discretizations of FDOT forward and inverse problems pose a trade-off between the accuracy and the computational efficiency of the image reconstruction. To address this trade-off, we analyzed the effect of discretization on the accuracy of FDOT imaging and proposed novel adaptive meshing algorithms for FDOT in a series of studies. In this Letter, we apply these new adaptive meshing algorithms to FDOT imaging using real data from a phantom experiment to demonstrate the practical advantages of our algorithms in FDOT image reconstruction.  相似文献   

12.
Classical machine learning algorithms seem to be totally incapable of processing tremendous amounts of data, while quantum machine learning algorithms could deal with big data with ease and provide exponential acceleration over classical counterparts. Meanwhile, variational quantum algorithms are widely proposed to solve relevant computational problems on noisy, intermediate-scale quantum devices. In this paper, we apply variational quantum algorithms to quantum support vector machines and demonstrate a proof-of-principle numerical experiment of this algorithm. In addition, in the classification stage, fewer qubits, shorter circuit depth, and simpler measurement requirements show its superiority over the former algorithms.  相似文献   

13.
压缩感知理论常用在磁共振快速成像上,仅采样少量的K空间数据即可重建出高质量的磁共振图像.压缩感知磁共振成像技术的原理是将磁共振图像重建问题建模成一个包含数据保真项、稀疏先验项和全变分项的线性组合最小化问题,显著减少磁共振扫描时间.稀疏表示是压缩感知理论的一个关键假设,重建结果很大程度上依赖于稀疏变换.本文将双树复小波变换和小波树稀疏联合作为压缩感知磁共振成像中的稀疏变换,提出了基于双树小波变换和小波树稀疏的压缩感知低场磁共振图像重建算法.实验表明,本文所提算法可以在某些磁共振图像客观评价指标中表现出一定的优势.  相似文献   

14.
李守鹏  王林元  闫镔  李磊  刘拥军 《中国物理 B》2012,21(10):108703-108703
Compton scattering imaging is a novel radiation imaging method using scattered photons.Its main characteristics are detectors that do not have to be on the opposite side of the source,so avoiding the rotation process.The reconstruction problem of Compton scattering imaging is the inverse problem to solve electron densities from nonlinear equations,which is ill-posed.This means the solution exhibits instability and sensitivity to noise or erroneous measurements.Using the theory for reconstruction of sparse images,a reconstruction algorithm based on total variation minimization is proposed.The reconstruction problem is described as an optimization problem with nonlinear data-consistency constraint.The simulated results show that the proposed algorithm could reduce reconstruction error and improve image quality,especially when there are not enough measurements.  相似文献   

15.
Exploiting the wavelet structure in compressed sensing MRI   总被引:1,自引:0,他引:1  
Sparsity has been widely utilized in magnetic resonance imaging (MRI) to reduce k-space sampling. According to structured sparsity theories, fewer measurements are required for tree sparse data than the data only with standard sparsity. Intuitively, more accurate image reconstruction can be achieved with the same number of measurements by exploiting the wavelet tree structure in MRI. A novel algorithm is proposed in this article to reconstruct MR images from undersampled k-space data. In contrast to conventional compressed sensing MRI (CS-MRI) that only relies on the sparsity of MR images in wavelet or gradient domain, we exploit the wavelet tree structure to improve CS-MRI. This tree-based CS-MRI problem is decomposed into three simpler subproblems then each of the subproblems can be efficiently solved by an iterative scheme. Simulations and in vivo experiments demonstrate the significant improvement of the proposed method compared to conventional CS-MRI algorithms, and the feasibleness on MR data compared to existing tree-based imaging algorithms.  相似文献   

16.
 针对闪光照相图像信噪比低的特点,提出了一种基于广义变分正则化的图像重建算法,该方法采用p-范数取代目前广泛采用的全变分范数作为正则项,构造了用于图像重建的展平泛函,将图像重建问题转化为目标泛函最优化问题,采用固定点迭代法求解图像重建的最优解。数值计算结果表明,该算法在重建过程中能够有效抑制图像噪声,并加大对图像边缘的保持能力,从而提高了图像重建质量,是一种有效且性能优良的闪光照相图像重建算法。  相似文献   

17.
骆乐  陈钱  戴慧东  顾国华  何伟基 《发光学报》2018,39(10):1478-1485
为了在现有的采样条件下,通过新的压缩采样方式获得计算量小且质量更好的图像,提出了基于压缩感知与扩展小波树的自适应压缩成像方法。首先将图像投影到分区控制的DMD上,获得图像在低分辨率下的测量值,并通过压缩感知重构算法重构出低分辨图像,接着利用扩展小波树预测重要小波位置,通过DMD在小波域采样获取图像的细节信息,最后由小波逆变换恢复高分辨率图像。将该方法与最小化全变分算法(TVAL3)和近来提出的基于扩展小波树的自适应成像算法(EWT-ACS)效果进行对比,实验结果表明,以boat图像为例,在压缩感知采样率为0.75,整体采样率为10%的无噪声条件下,该方法相较于TVAL3、EWT-ACS算法信噪比提高了4.63 dB和2.87 dB,在附加噪声条件下成像效果也较好。该方法能极大地降低压缩感知重建算法的运行时间,同时减少采样次数,具有较好的抗噪性。  相似文献   

18.
二维有耗色散介质的时域逆散射方法   总被引:1,自引:0,他引:1       下载免费PDF全文
刘广东  张业荣 《物理学报》2010,59(10):6969-6979
为了重建二维有耗色散介质的电参数分布,基于Debye模型,应用泛函分析和变分法,提出一种时域逆散射新方法.该方法首先以最小二乘准则构造目标函数,将逆问题表示为约束最小化问题,接着应用罚函数法转化为无约束最小化问题,然后基于变分计算导出闭式的Lagrange函数关于特征参数的Fréchet导数,最后借助梯度算法和时域有限差分法迭代反演Debye模型参数.为了对抗噪声污染和逆问题的病态特性,采用了一阶Tikhonov正则化方法.数值应用中,利用Polak-Ribière-Polyak非线性共轭梯度法,对二维乳  相似文献   

19.
This paper investigates a novel approximate Bayesian inference procedure for numerically solving inverse problems. A hierarchical formulation which determines automatically the regularization parameter and the noise level together with the inverse solution is adopted. The framework is of variational type, and it can deliver the inverse solution and regularization parameter together with their uncertainties calibrated. It approximates the posteriori probability distribution by separable distributions based on Kullback–Leibler divergence. Two approximations are derived within the framework, and some theoretical properties, e.g. variance estimate and consistency, are also provided. Algorithms for their efficient numerical realization are described, and their convergence properties are also discussed. Extensions to nonquadratic regularization/nonlinear forward models are also briefly studied. Numerical results for linear and nonlinear Cauchy-type problems arising in heat conduction with both smooth and nonsmooth solutions are presented for the proposed method, and compared with that by Markov chain Monte Carlo. The results illustrate that the variational method can faithfully capture the posteriori distribution in a computationally efficient way.  相似文献   

20.
A new numerical method, which is based on the coupling between variational multiscale method and meshfree methods, is developed for the water wave problems, in which the free surface capturing technique is used to capture the position of the free surface. The proposed method takes full advantage of meshfree methods, therefore, no mesh generation and mesh reconstruction are involved. Meanwhile, due to that the proposed method belongs to meshfree methods, thus it is suitable for the highly deformed free surface flow problems. Finally, two water wave problems are solved and the results have also been analyzed. The numerical results show that the proposed method can indeed obtain accurate numerical results for the water wave problems, which does not refer to the choice of a proper stabilization parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号