首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Single material organic solar cells become an interesting area of research to overcome the challenges with efficient charge separation efficiencies in conventional organic solar cells. In this article, we have synthesized nonmetallated and metallated porphyrin‐fullerene dyad materials (H2P‐C60 and ZnP‐C60, respectively) with simple structure, comprehensively studied their charge transfer mechanism, and established a proof of concept that nonmetallated porphyrin‐fullerene dyads are better candidates to be used in organic solar cells compared with metallated dyads. Absorption and electrochemical analysis revealed the ground state electronic interactions between donor‐acceptor moieties in both types of dyads. Driving force (?ΔGoET) for intramolecular electron transfer process was calculated by first oxidation and reduction potentials of dyads. The excited state electronic interactions were characterized by time‐resolved fluorescence and pump‐probe transient absorption experiments. Strong fluorescence quenching of porphyrin along with reduced lifetimes in dyads due to deactivation of singlet excited states by photoinduced charge transfer process between porphyrin/Zn‐porphyrin core and fullerene in different polarity solvents was observed. Transient absorption spectroscopy was also applied to identify the transient spectral features, ie, cationic (H2P+/ZnP+) and anionic (C60?) radicals formed because of the charge separation in both types of dyads. Finally, organic solar cell device was also fabricated using the dyads. We obtained higher Voc, Jsc, and fill factor in single material organic solar cell using H2P‐C60 compared to previous reports.  相似文献   

2.
Titania (TiO2) nanorods have been synthesized with controlled size for dye-sensitized solar cells (DSSCs) via hydrothermal route at low hydrothermal temperature of 100 °C for 24 h. The titania nanorods were characterized using XRD, SEM, TEM/HRTEM, UV-vis Spectroscopy, FTIR and BET specific surface area (S BET), as well as pore-size distribution by BJH. The results indicated that the bulk traps and the surface states within the TiO2 nanorods films have enhanced the efficiency of DSSCs. The size of the titania nanorods was 6.7 nm in width and 22 nm in length. The high surface area can provide more sites for dye adsorption, while the fast photoelectron-transfer channel can enhance the photogenerated electron transfer to complete the circuit. The specific surface area S BET was 77.14 m2?g?1 at the synthesis conditions. However, the band gap energy of the obtained titania nanorods was 3.2 eV. The oriented nanorods with appropriate lengths are beneficial in improving the electron transport property and thus leading to the increase of photocurrent, together enhancing the power conversion efficiency. A nearly quantitative absorbed photon-to-electrical current conversion achieved upon excitation at wave length of 550 nm and the power efficiency was enhanced from 5.6 % for commercial TiO2 nanoparticles Degussa (P25) cells to 7.2 % for TiO2 nanorods cells under AM 1.5 illumination (100 mW?cm?2). The TiO2 cells performance was improved due to their high surface area, hierarchically mesoporous structures and fast electron-transfer rate compared with the Degussa (P25).  相似文献   

3.
The behavior of the bands of the NH stretching vibrations of sterically distorted porphyrins whose macrocycles are undergoing different types of deformation (saddling, elongation, waving, etc.) is studied in CHCl3 and CCl4 solutions. The geometry of sterically distorted porphyrins and the frequencies of their normal vibrations are calculated in terms of the density functional theory. The relative strength of intramolecular hydrogen bonds is estimated in terms of the theory of natural (localized) orbitals. The frequency of the stretching NH vibrations of porphyrins with saddling, elongation, or waving deformation of their macrocycles is shown to be inversely proportional to the energy of stabilization E (2), arising due to the charge transfer from the orbitals of unshared electron pairs of the nitrogen atoms of the pyrrolenyne rings to the antibonding σ*NH orbitals. It is shown that this frequency can serve as a measure of the strength of intramolecular hydrogen bonds. A specific feature of the ruffling deformation of the porphyrin macrocycle is that the strengthening of the hydrogen bonds (due to a decrease in the size of the internal porphyrin window) is accompanied by a shortening of the NH bonds, whereas, depending on the magnitude of the ruffling, the frequency of the stretching NH vibrations decreases or increases. This phenomenon is associated with the fact that the shortening of the NH bond facilitates a decrease in its effective van der Waals radius and weakening of destabilizing interactions of the σNH orbitals.  相似文献   

4.
Hydrothermal process has been employed to synthesize titanium oxide (TiO2) bottle brush. The nanostructured bottle brushes with tetragonal nanorods of ~75 nm diameter have been synthesized by changing the nature of the precursors and hydrothermal processing parameters. The morphological features and structural properties of TiO2 films were investigated by field emission scanning electron microscopy, X-ray diffraction, high-resolution transmission electron spectroscopy, Fourier transform Raman spectroscopy, and X-ray photoelectron spectroscopy. The influence of such nanostructures on the performance of dye-sensitized solar cells (DSSCs) is investigated in detail. The interface and transient properties of these nanorods and bottle brush-based photoanodes in DSSCs were analyzed by electrochemical impedance spectroscopic measurements in order to understand the critical factors contributing to such high power conversion efficiency. Surface area of sample was recorded using Brunauer–Emmett–Teller measurements. It is found that bottle brush provides effective large surface area 89.34 m2 g?1 which is much higher than TiO2 nanorods 63.7 m2 g?1. Such effective surface area can facilitate the effective light harvesting, and hence improves the dye adsorption and the photovoltaic performance of DSSCs, typically in short-circuit photocurrent and power conversion efficiency. A best power conversion efficiency of 6.63 % has been achieved. We believe that the present device performance would have wide interests in dye-sensitized solar cell research.  相似文献   

5.
A novel self‐assembled organic–inorganic hybrid structure consisting of zinc oxide and two oppositely charged porphyrins, showing significantly enhanced photocatalytic activity, is presented. Electrostatic self‐assembly of the cationic tetra‐(N‐methyl‐4‐pyridyl)porphyrin (TMPyP) with preformed assemblies of ZnO nanorods and the anionic tetra‐(4‐sulfonatophenyl)porphyrin (TPPS) in ethanol results in porphyrin microrhombuses decorated with ZnO nanorods. The structure formation is followed spectroscopically. The shape of the microrhombuses and the number of attached ZnO nanoparticles can be tuned through the porphyrin ratio TMPyP/TPPS. An enhanced and selective catalytic activity is found, giving insight into the degradation mechanism. Due to the tool‐box principle and its versatility, the concept may have great impact in fields such as solar‐energy conversion and optoelectronics.  相似文献   

6.
ABSTRACT

Linear porphyrin oligomers have found various applications as synthetic molecular wires in the context of light harvesting, solar energy conversion and molecular electronics. In many of these applications a partial ordering of the molecules helps to improve the reaction efficiency or device performance. In this work we study the orientational properties of the building blocks of such porphyrin-based molecular wires, namely a porphyrin monomer and the corresponding butadiyne-bridged dimer. The porphyrins have been embedded in the nematic liquid crystal solvent 4-cyano-4'-pentylbiphenyl (5CB) and the anisotropic properties of their photogenerated triplet states were characterised by transient electron paramagnetic resonance (EPR) spectroscopy. When aligned in strong magnetic fields, the liquid crystal molecules impose their orientational anisotropy onto the solute guest molecules whose orientation-dependent magnetic properties can then be explored. The line shape analysis of the porphyrin triplet state EPR spectra – highly sensitive to small conformational changes – confirms the orientation of the zero-field-splitting (ZFS) tensors previously determined for these molecules by magnetophotoselection experiments. A biaxial distribution function is shown to be necessary to simulate the experimental EPR data. The biaxial behaviour, in conjunction with symmetry considerations, allows an unambiguous assignment of the three ZFS tensor axes to the molecular axes. From the determined orientational distributions of the porphyrins in 5CB, the biaxial order parameters for both molecules were calculated.  相似文献   

7.
《Current Applied Physics》2018,18(12):1564-1570
Charge transport dynamics in ZnO based inverted organic solar cell (IOSC) has been characterized with transient photocurrent spectroscopy and localised photocurrent mapping-atomic force microscopy. The value of maximum exciton generation rate was found to vary from 2.6 × 1027 m−3s−1 (Jsat = 79.7 A m−2) to 2.9 × 1027 m−3s−1 (Jsat = 90.8 A m−2) for devices with power conversion efficiency ranging from 2.03 to 2.51%. These results suggest that nanorods served as an excellent electron transporting layer that provides efficient charge transport and enhances IOSC device performance. The photovoltaic performance of OSCs with various growth times of ZnO nanorods have been analysed for a comparison between AM1.5G spectrum and local solar spectrum. The simulated PCE of all devices operating under local spectrum exhibited extensive improvement with the gain of 13.3–13.7% in which the ZnO nanorods grown at 15 min possess the highest PCE under local solar with the value of 2.82%.  相似文献   

8.
《Current Applied Physics》2014,14(3):294-299
A unique composite of TiO2 nanoparticles (NPs) and nanorods (NRs) has been used to fabricate a photoelectrode for developing dye-sensitized solar cells (DSSCs) with higher sensitivity. The TiO2 nanorods were synthesized using a mechanical process, in which electrospun TiO2 nanofibers was grinded in a controlled way to obtain uniform size distribution. The characteristics of electron transport, recombination lifetime and charge collection were investigated by intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS). Photoelectrodes prepared with the composites of NRs and NPs showed significant improvements in electron transportation compared to only NP photoelectrodes, which would enhance the photovoltaic performance of DSSCs. IMPS and IMVS measurements show that fast electron transport and slightly decreased recombination lifetime resulted in the improvement of efficiency. The highest energy conversion efficiency obtained from the photoelectrodes fabricated with the as-prepared rutile TiO2 nanofibers at 5 wt% NR content was up to 6.1% under AM1.5G solar illumination. The results demonstrate that the composite nanostructure can take advantage of both the fast electron transport of the nanorods and the high surface area of the nanoparticles.  相似文献   

9.
Particular features and quenching mechanisms of exciton luminescence of water-soluble nanocomposites that are formed as a result of the interaction of surface charged semiconductor quantum dots (QDs) CdSe/ZnS (d CdSe = 2.8 nm) and cationic porphyrins (H2TMPyrP4+ and ZnTMPyrP4+) have been studied theoretically and experimentally. It has been found that, in CdSe/ZnS??Porphyrin conjugates, there occurs long-range inductive resonance electronic excitation energy transfer from surface modified (with thioglycolic or mercaptoundecanoic acid) QDs to porphyrins, which is accompanied by quenching of the exciton luminescence of QDs and an increase in the fluorescence intensity of porphyrin. It has been shown that, when mercaptoundecanoic acid is used as a QD shell, the QD luminescence quenching efficiency by porphyrins follows the F?rster-Galanin theory and depends on the overlap integral between the CdSe/ZnS luminescence band and the absorption spectra of free-base porphyrin H2TMPyrP4+ and its metal complex ZnTMPyrP4+. It has been revealed that, as the QDs ? Zn-porphyrin intercenter distance decreases from 39.1 (mercaptoundecanoic acid) to 30.1), a considerable QD luminescence quenching is observed; however, the energy transfer efficiency substantially decreases, from 55% in the former case to 23% in the latter one. Based on the spectral-luminescent data and quantum-chemical calculations, it has been found that the chemical change of H2TMPyrP4+ in the structure of the complex with CdSe/ZnS QDs passivated by thioglycolic or mercaptoundecanoic acid is caused by the formation of a metal complex ZnTMPyrP4+. Based on calculations of the redox-potentials, it has been concluded that the low luminescence quantum yield of CdSe/ZnS QDs passivated by residues of mercaptocarboxylic acids S?(CH2) n COO? and its dependence on the number of CH2 groups are related to the possibility of photoinduced electron transfer from the HOMO of passivating molecules to QDs (QD* ? S?(CH2)nCOO? hole transfer). It has been shown that the quenching of the exciton luminescence of QDs in heterogeneous structures CdSe/ZnS(thioglycolic acid)??ZnTMPyrP4+, which is complementary to the energy transfer, can be caused by the photoinduced electron transfer that involves the participation of the LUMO of the ZnTMPyrP4+ molecule (QD* ? ZnTMPyrP4+).  相似文献   

10.
The directional self-assembly of nanosized, structurally organized triads is implemented in methylcyclohexane at 295 K, which is based on the two-point extra coordination of nonsymmetric, covalently bound heterodimers of Zn porphyrins to bipyridyl-substituted porphyrin free-base extra ligands. Based on experimental data and theoretical calculations, the structural organization is determined and information on the energetics of electronic interactions of components is obtained and the rate constants of the directional energy transfer (k ET ∼ 1011 s−1) and photoinduced electron transfer (k PET ∼ 2.7 × 109 s−1) are determined. The effects of the orientation of interacting macrocycles, the intercenter distances and the solvent temperature on the efficiency of relaxation processes in the triad is investigated.  相似文献   

11.
Self-assembled monoclinic phase of novel floral β-Ga2O3 nanorods were prepared using reflux condensation method by controlled precipitation of metal cations with urea. The structural and morphological properties were investigated by X-ray powder diffraction, Raman spectroscopy and Scanning electron microscope. Single-crystalline nanorods with size 100 nm involved in the self-assembly process to form flowery pattern have diameter ~1 μm with surface area 40.8 m2/g confirmed from transmission electron microscope and Brunauer–Emmett–Teller analysis. The band gap energy of 4.59 eV was evaluated from the UV–vis diffuse reflectance spectrum and the photoluminescence spectrum displayed the characteristic luminescence and blue-light emission peaks. Further, the photocatalytic activity of novel β-Ga2O3 floral nanorods towards the photodegradation of Rhodamine B in aqueous solution under ultra violet light irradiation showed better photocatalytic activity than the commercial photocatalyst Degussa P25 TiO2.  相似文献   

12.
A natural self-assembly process of semiconductor nanoparticles leading to the formation of doped, monocrystalline nanorods with highly enhanced dopant-related luminescence properties is reported. ∼4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu+-Al3+ or Mn2+ have been aggregated in the aqueous solution and grown into nanorods of length ∼400 nm and aspect ratio ∼12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving both Ostwald-ripening and particle-to-particle oriented-attachment. Sulphur-sulphur catenation is proposed for the covalent-linkage between the attached particles. The nanorods exhibit self-assembly mediated quenching of the lattice defect-related emission accompanied by multifold enhancement in the dopant-related emission. This study demonstrates that the collective behavior of an ensemble of bare nanoparticles, under natural conditions, can lead to the formation of functionalized (doped) nanorods with enhanced luminescence properties.  相似文献   

13.
Three novel porphyrins, 5,10,15-tri-phenyl-20-[4-(3-phenoxy)-propoxy]phenyl porphyrin, 5,15-di-phenyl-10,20-di-[4-(3-phenoxy)-propoxy]phenyl porphyrin and 5-phenyl-10,15,20-tri- [4-(3-phenoxy)-propoxy]phenyl porphyrin, and their corresponding copper(II) complexes were synthesized and characterized spectroscopically. The photocatalytic effects of TiO2 samples impregnated with copper(II) porphyrins was investigated by photodegradation of 4-nitrophenol (4-NP) in aqueous solution under visible light. The photocatalysts were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectra and FT-IR spectra. The results indicated that CuPps were successfully loaded and interacted with the surface of TiO2 microsphere, which is crucial to enhance the activity of the catalytic composite under visible light.  相似文献   

14.
This work reports the novel contribution of chlorophyll b as natural anthocyanin co-pigment in unpurified black rice extract for improved electron transport and performance of natural dye-sensitized solar cell. The dyes are extracted as prominent photosensitizers by considering the concentration, the dye electronic structure, the extraction, and immersion time. The anthocyanin dye containing 1.92 mM cyanidin-3-O-glucoside structure has been extracted without purification. Interestingly, 0.33 mM chlorophyll b is found as a natural co-sensitizer in unpurified anthocyanin. The role of chlorophyll b supporting the electron transfer of anthocyanin dye will be investigated for improved cell performance. Both purified and unpurified dyes are compared in the same anthocyanin concentration. The combined Tauc plot and voltametric method will be conducted to show the interfacial electronic band edges of TiO2-dye-electrolyte. Electrochemical impedance spectroscopy method will investigate electron transfer dynamic in both cell systems. As a result, chlorophyll b has dominantly acted as two intermediate states in boosting electron injection and dye regeneration to improve cell efficiency from 1.31 to 2.17 % due to the narrower LUMO–TiO2 conduction band gap and the narrower HOMO-iodide (I ?) potential gap, respectively. According to the electron transport, the co-sensitizer contributes to the smaller transport resistance (R t?=?21.9 Ω), the higher chemical diffusion coefficient (Dn?=?1.696?×?10?3 cm2/s), the higher chemical capacitance (Cμ?=?14.32 μF), and the faster electron transport (τd?=?39.88 μs).  相似文献   

15.
Quaternary n-type Al0.08In0.08Ga0.84N grown on p-Si using molecular beam epitaxy technique was fabricated as a pn-junction and an anti-reflection coating (ARC) of solar cells. The structural properties and surface morphology of the solar cells were investigated using scanning electron and atomic force microscopy. Optical reflectance was obtained using an optical reflectometery system (Filmetric F20-VIS). Current–voltage characteristics were examined under 100 mW cm?2 illumination conditions. Quaternary n-type Al0.08In0.08Ga0.84N coating was found to be an excellent ARC against incident light compared with other ARCs. This material also exhibited good light trapping over a wide wavelength spectrum, which produced highly efficient solar cells. The unique and strong polarization, as well as the piezoelectric effect, of the quaternary-nitrides was employed to reduce surface recombination velocities and enhance the solar cell performance. A solar cell with reasonable conversion efficiency of 9.74% was obtained when the n-Al0.08In0.08Ga0.84N/p-Si was employed.  相似文献   

16.
The directional self-assembly of nanosized, structurally organized pentads that include five tetrapyrrole macrocycles and are based on the two-point coordination interaction of two covalently bound dimers of Zn porphyrins (homo-and heterodimers) with molecules of either the free base or the Cu complex of tetrametapyridyl-substituted porphyrin extra ligand is implemented in methylcyclohexane at 295 K. Using the method of the density functional theory (DFT) in the B3LYP/6-31g(d) approximation, the geometry of the pentad is fully optimized and the main factors that determine its redox properties are determined. The energies of the lowest excited states of the pentad are calculated by the ZINDO/S method, and it is shown that the occurrence of identical molecules in the system facilitates the formation of excitonic states with different contributions from the charge-transfer component. The directional energy transfer and the photoinduced electron transfer, which leads to the formation of a low-lying charge-transfer state (CT state), are studied and the rate constants of these two processes are determined (k ET ∼ 1011 s−1 and k PET ≈ (1.8−6.0) × 109 s−1, respectively). The strong effect of the temperature of the solvent on the efficiency of relaxation processes in pentad complexes under study is revealed and studied. Roles played by the low-lying CT state and d-π exchange effects (the Cu-contained pentad) in fluorescence quenching of pentad complexes are determined.  相似文献   

17.
《Current Applied Physics》2020,20(2):358-362
Third generation nanostructure-based solar cells such as dye-sensitized solar cells (DSSCs) are green and low-cost future substitute for silicon-based solar cells. Zinc Stannate-based DSSCs are attractive due to their interesting properties, but aggregated Zn2SnO4 nanoparticles are large in comparison to TiO2 nanoparticles which deteriorate DSSC performance. Electric field assisted sintering (EFAS) due to its outstanding impacts on optical and electrical characteristics is favorable. To this aim, we try to study the enhancement effect of EFAS on the performance of Zn2SnO4-based DSSCs. EFAS could manipulate nanostructure matrix remarkably to develop the effective surface area to gather higher amounts of dye molecules resulting enhanced light harvesting and improved current density further; this method helps to improve electron transportation by decreasing recombination probability. The reported strategy is applicable in numerous electro-optical devices including nanoporous medium such as perovskite solar cells.  相似文献   

18.
In this paper, TiO2 particles (~30 nm) modified with Gd2O3-coating layer (~2 nm) for dye-sensitized solar cells (DSSCs) were fabricated via the hydrothermal method. Among the solar cells based on the Gd3+-doped TiO2 photoanodes, the optimal conversion efficiency was obtained from the 0.025Gd3+-modified TiO2-based cell, with a 17.7% improvement in the efficiency as compared to the unmodified one (7.18%). This enhancement was probably due to the improved UV radiation harvesting via a down-conversion luminescence process by Gd3+ ions, enhancement of visible light absorption and improved dye loading capacity. In addition, after Gd modification, a thin coating could be formed on the TiO2 nanoparticles, which worked as an energy barrier and resulted in a lower charge recombination.  相似文献   

19.
The triplet states of several substituted porphyrins (Tetraphenylporphyrin (H2TPP), Zinc-Tetramethylporphyrin (ZnTMP), Octaethylporphyrin (H2OEP) and the Dication of H2TPP (H4TPP2+)) and two covalently linked dimers with H2TPP-subunits in disordered solid solution were studied by EPR and ENDOR at liquid helium temperature. The measurement yields theA zz component of the hyperfine tensors of all α-protons in the reference frame of the zero field splitting tensor. Dipolar and isotropic contributions toA zz are discussed and spin densities derived. The spin densities are compared with results of all-valence-electrons self-consistent field molecular orbital calculations (RHF-INDO/S). One of the dimers shows indications of triplet energy transfer between the porphyrin subunits. The order of magnitude of the transfer rate is estimated to be 5 · 105 s?1.  相似文献   

20.
本文利用柱层析法从天然产物中提取分离了叶绿素a(Chl-a)和胡罗h素C(Car),并按Langmuir-Blodgett单分子膜技术制备了Chl-a单分子膜、Chl-a与Car的混合单分子膜。实验中还引入了硬脂酸起辅助支撑作用,选用的硬脂酸与Chl-a的摩尔比为10:1。挂膜载片为经过疏水处理的玻璃片。为制作模仿天然光合膜集光天线系统的功能,我们以Car为给体Chl-a为受体,Caf与Chl-a的摩尔比为5:1、50:1和125:1;这里选用的比例远大于集光天线的色素比例。用荧光光谱的测量发现,L-B膜内的色素分子有特殊的集聚态,这种状态有助于实现高效的激子转移。作者指出,由于二维的L-B膜上会发生Frster型和激子型两种能量转移的协同作用,所以在Car与Chl-a的摩尔比125:1时Chl-a的荧光无相应衰减。Chl-a单分子膜的荧光带为677nm和766nm。吸附在层析纸上Chl-a的荧光,仅长波带有明显位移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号