首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, space charge dynamics under DC electric field of −100 kV/mm in low-density polyethylene (LDPE) and its nanocomposite containing a small amount of MgO nanoparticles were measured using an improved pulsed electro-acoustic (PEA) system. Unlike negative packet-like space charge accumulating in LDPE films, no remarkable space charge was observed in LDPE/MgO nanocomposite films, which indicated that the introduction of MgO nanoparticles played a key role on the space charge suppression. Different with current qualitative models, this paper describes space charge suppression on the basis of simulation using the bipolar charge transport model, which featured bipolar charges injection, transport, trapping, recombination, and extraction process. It was shown from the simulation that trap depth, trap concentration, local electric field and charge injection barrier height were all significant factors on the space charge suppression process. A deeper trap depth in LDPE/MgO nanocomposites made it easier for traps to capture mobile carriers. And a larger trap concentration effectively slowed down the whole carrier movement although there seemed a trap concentration threshold less than 30 Cm−3, above which this effect became slight. In addition, both the high permittivity of LDPE/MgO nanocomposites and low local electric field in the vicinity of cathode led to a larger injection barrier height based on the Schottky injection law, which would tremendously block the charge injection. At last, the suppression mechanism of space charge formation in the LDPE/MgO nanocomposites is presented.  相似文献   

2.
《Current Applied Physics》2020,20(9):1031-1035
We report the deposition of epitaxial SrHfO3 thin films on a SrTiO3 (001) substrate in different substrate temperatures by using a pulsed laser deposition (PLD) method. We carried out X-ray diffraction (XRD), X-ray reflectivity (XRR), reciprocal space mapping (RSM), atomic force microscopy (AFM), resistivity, and Hall measurements to examine the crystallinity, morphology and electrical properties of these films. All films showed smooth and uniform morphology with small root mean square (RMS) roughness. While the SrHfO3 sample grown at 750 °C is metallic, the films deposited at 600 °C, 650 °C, and 700 °C show an upturn at low temperatures. The temperature dependence of the metallic parts was analyzed based on the parallel resistor model that includes resistivity saturation. On the other hand, the low-temperature upturn was found to be well described by a weak localization mechanism. We also observed the possible emergence of non-Fermi liquid behavior when the upturn disappeared. All SrHfO3 films have p-type charge carriers.  相似文献   

3.
低密度聚乙烯材料中的空间电荷包现象通常会引起严重电场畸变而影响其击穿特性. 本文借鉴半导体中的耿氏效应的负微分迁移率机理来描述电荷包的形成机理,并结合载流子的注入条件及体内陷阱对电荷迁移的影响等因素,对文献中报道的两类外加场强不同且迁移趋势各异的空间电荷包行为进行了模拟仿真,模拟的电荷包大小随电场变化规律,电荷包迁移速率随时间变化规律等与相应实验结果符合.模拟结果表明,产生耿氏效应的负微分迁移率是造成电荷包非弥散传输的主要原因,其与材料电极注入情况及体内陷阱态的共同作用导致了空间电荷包行为迁移的多样性. 关键词: 空间电荷包 耿氏效应 模拟仿真 负微分迁移率  相似文献   

4.
聚乙烯空间电荷包行为的形成机理与仿真方法研究   总被引:4,自引:0,他引:4       下载免费PDF全文
夏俊峰  张冶文  郑飞虎  雷清泉 《物理学报》2009,58(12):8529-8536
聚乙烯中的空间电荷包行为是空间电荷的一种特殊的输运行为.研究表明,空间电荷包行为由于受材料本身特性、外加电场大小以及环境温度等的影响,导致其产生过程及传输特性上存在较大差异,这些因素给空间电荷包行为产生机理研究带来了较大困难.通过对电荷的电极注入过程、载流子的体内迁移规律及空间电荷与体内陷阱的相互作用机制进行分析,探讨了不同外加电场及不同深度陷阱能级对电荷包行为造成的相关影响,在此基础上建立物理模型来描述电荷包的产生和迁移过程.模型中提出了在高于阈值电场时,载流子迁移速度与电场关系存在负微分迁移率的假设.基于此模型对空间包行为的模拟结果与实验结果取得较好的一致. 关键词: 空间电荷包 数值模拟 负微分迁移率  相似文献   

5.
This paper proposes an analytical solution for DC negative corona discharge in a wire-cylinder device based on experimental results in which both the corona and drift regions are considered; this approach aims to provide a theoretical method for analyzing electrostatic precipitation at high temperatures. The inter-electrode space is divided into three zones, namely, the ionization layer, the attachment layer (corona region) and the drift region, to investigate the space charge concentration and the electric field distribution. The boundary of the ionization layer is assumed to be the radius at which the rate of ionization balances that of electron attachment. The radius where the value of E/N equals 110 Td is recommended as the boundary of the attachment layer. It was determined that an increasing temperature leads to a decrease in the largest space charge number density and the largest electric field in the drift region that can be provided by a discharging device. With respect to the device in the present work, when the temperature increases from 350 °C to 850 °C, the largest electric field decreases from ∼9 × 106 V/m to ∼3 × 106 V/m, and the largest charge number density decreases from ∼1.3 × 1015 m−3 to 6.4 × 1014 m−3. The radius of the corona region, the space charge number density and the electric field increase as the applied voltage increases at a given temperature. For example, at a temperature of 550 °C, when the applied voltage increases from 10,500 V to 18,879 V, the radius of the corona region increases from ∼2.9 mm to ∼4.9 mm. It appears to be unreasonable to use a constant value that is calculated from Peek's formula as the electric field at the surface of the cathode under all of the conditions.  相似文献   

6.
It has been found that under certain experimental conditions, polyoxymethylene films undergo a microscopic as well as macroscopic polarization resulting in electret formation. Thermally stimulated discharge (TSD) currents have been measured for polyoxymethylene film electrets of 100 μM prepared at various polarizing fields and polarization temperatures. Experimental evidence like the shift of the discharge current peak with polarization temperature, and a nonlinear dependence of the accumulated charge on field strength suggests the formation of a space charge and interfacial polarization. The observed TSD peak at 130°C coincides with the α -relaxation temperature in low-frequency dielectric measurements. Activation energies and relaxation times have been calculated on the basis of the experimental data.  相似文献   

7.
《Solid State Ionics》2006,177(13-14):1129-1135
The conductivity of acceptor-doped LaNbO4 has been investigated in the temperature range 300 to 1200 °C as a function of the oxygen pressure and water vapor pressure by means of impedance spectroscopy and EMF measurements. The conductivity is predominantly ionic below 800 °C in air and for higher temperatures under reducing conditions. Protons are the major ionic charge carrier in the presence of water vapor. A maximum in proton conductivity of ∼ 0.001 S/cm was obtained at 950 °C in atmospheres containing ca 2% H2O. At high temperatures (> 1000 °C) under oxidizing conditions, electron hole conduction prevails. The conductivity has been modeled assuming that oxygen vacancies and protons compensate the acceptor doping. Transport coefficients describing mobility of defects and thermodynamic constants for the incorporation of protons have been derived.  相似文献   

8.
The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800–1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500–600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900–1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.  相似文献   

9.
《Solid State Ionics》2006,177(13-14):1237-1242
A hybrid supercapacitor was fabricated with NiO and activated carbon as positive and negative electrode, PVA–KOH–H2O containing 5 M KOH as alkaline polymer gel electrolyte, respectively. Cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge–discharge measurements were applied to investigate the dependence of the hybrid supercapacitor on the temperatures from − 20 to 40 °C. The results demonstrated that the capacitive performance of the hybrid supercapacitor turned even better with the temperatures rising up from − 20 to 40 °C. The increase of temperature improved the conductivity of the alkaline polymer gel electrolyte, decreased the charge-transfer resistance and made the better contact at the interface between the electroactive materials and the alkaline gel electrolyte at higher operating temperature. The maximum of the specific capacitance and energy density of the hybrid supercapacitor were 73.4 F/g and 26.1 Wh/kg at the current density of 0.1 A/g and the operating temperature of 40 °C, respectively.  相似文献   

10.
The TSDC and transient currents measurement have been carried out on pure poly(vinyl chloride), poly(methyl methacrylate) and polyblends of various weight ratios as a function of electric fields at constant poling temperature. For PVC and different blend samples single peak in the temperature range 100–170 °C has been observed in TSDC thermograms, however, for PMMA samples two peaks were observed at around 90 and 165 °C. The various TSDC parameters i.e. activation energy, charge released and relaxation times have been calculated. Results suggest that dipolar and space charge mechanism are dominant for observed current.  相似文献   

11.
《Radiation measurements》2000,32(3):247-252
We have investigated the gamma ray induced sensitization of the 110°C TL peak in quartz, separated from sand, in the dose range 30–750 Gy. A pre-dose of 100 Gy followed by annealing at 500°C for 1 h yielded an optimum sensitization factor of 14.2 for a test gamma dose of 0.5 Gy; this factor decreases slowly up to the studied pre-gamma dose of 750 Gy. From ESR studies carried out in the temperature range 25–550°C, the formation of E1-centres and their subsequent decay (at temperatures >400°C) have been observed. The released charge carriers (electrons) may lead to elimination of competitors (as a result of their filling up). Thus, the radiation-induced sensitization of the 110°C TL peak could be due to elimination of the competing deep traps.  相似文献   

12.
Tetrafluoroethylene–hexafluoropropylene copolymer (FEP) films were treated with titanium-tetrachloride vapor in a molecular-layer deposition process. As a result of the surface treatment, significant improvements of the thermal and temporal charge stability were observed. Charge-decay measurements revealed enhancements of the half-value temperatures and the relaxation times of positively charged FEP electrets by at least 120 °C and two orders of magnitude, respectively. Beyond previous publications on fluoropolymer electrets with surface modification, we here report enhanced charge stabilities of the FEP films charged in negative as well as in positive corona discharges. Even though the improvement for negatively charged FEP films is moderate (half-value temperature about 20 °C higher), our experiments show that the asymmetry in positive and negative charge stability that is typical for FEP electrets can be overcome by means of chemical surface treatments. The results are discussed in the context of the formation of modified surface layers with enhanced charge-trapping properties.  相似文献   

13.
《Current Applied Physics》2020,20(7):835-840
Acoustic anomalies of relaxor ferroelectric Na1/2Bi1/2TiO3 single crystals were investigated over a wide temperature range from −196 °C to 900 °C by using Brillouin spectroscopy. The longitudinal sound velocity, the acoustic absorption coefficient and the elastic constant C11 were determined for the acoustic phonon mode propagating in the [100] direction. Two acoustic anomalies, weaker ones at the cubic-tetragonal phase transition temperature of ~540 °C and more pronounced ones at temperatures near 315 °C near the dielectric maximum temperature, were investigated and discussed in relation with the relevant order parameters coupled to the acoustic waves. The relaxation dynamics in the cubic phase were studied based on the flattening of the mode frequency and the half width, which was observed for the first time, and a modified Arrhenius law.  相似文献   

14.
Eu-doped ZnO (EZO) thin films were prepared on glass substrates at various growth temperatures by radio-frequency magnetron sputtering. The properties of deposited thin films showed a significant dependence on the growth temperature. The preferential growth orientation of all the thin films was occurred along the ZnO (002) plane. The maximum crystallite size and the minimum average transmittance in the wavelength range of 450–1100 nm were observed for the EZO thin film deposited at 25 °C. A red shift of the optical band gap was observed in the growth temperature range of 25–300 °C. The highest figure of merit, an index for evaluating the performance of transparent conducting thin films, was obtained at 200 °C of growth temperature. These results indicated that the high-quality EZO film was obtained at a growth temperature of 200 °C.  相似文献   

15.
Summary  A series of zinc stannate (Zn2 SnO4) thin films were prepared at four different substrate temperatures; namely, room-temperature (25°C), 50°C, 100°C and 200°C. Direct-current resistivity measurements were performed on these samples in the temperature range from room temperature (∼290 K) up to about 500 K. A phase transition (of positive temperature coefficient (PTC) of resistance) was observed in the thin film grown at room temperature at about 385 K. Other investigated samples showed a semiconducting behaviour of three distinct conduction mechanisms extending from intrinsic to thermal freeze-out conduction. The width of the band gapE g was found to depend on the substrate temperature and was discussed in terms of a formation of a band tailing. Thermal freeze-out was dominant at the lower temperature region. On leave from Department of Physics, Faculty of Science, Alexandria University, Alexandria, Egypt.  相似文献   

16.
Effects of High Temperature Storage (HTS) and bonding toward microstructure change of intermetallic compound (IMC) at the wire bonding interface of 3 types of bond pad (Al, AlSiCu and NiPdAu) were presented in this paper. Optical and electron microscope analyses revealed that the IMC growth rate of samples under 175 and 200 °C HTS increased in the order of Al > AlSiCu > NiPdAu. Besides, higher HTS and bonding temperatures also promoted higher IMC thickness. The compositional study showed that higher HTS and bonding temperature developed rapid interdiffusion in bonding interface. In the mechanical ball shear test, a decrease of the shear force of Al and AlSiCu bond pads after 500 h HTS was believed due to poorly developed IMC at bonding interface. On the other hand, shear force degradation at 1000 h was due to excessive growth of IMC that in turn causes the formation of defects. For NiPdAu bond pad, increasing trend of shear force with HTS duration at 175 °C implied a good reliability of the Cu wire bonding. The rapid microscopic inspection on Cu wired Al bond pad under HTS 175 °C showed the IMC development from the periphery to the center of the ball bond. However, after 500 h voids started to develop until the crack was observed at 1000 h.  相似文献   

17.
The microstructure of electrodeposited nanocrystalline chromium (n-Cr) was studied by using synchrotron radiation (SR) diffraction, SEM, TEM, and EDX techniques. The as-prepared n-Cr samples show the standard bcc crystal structure of Cr with volume-averaged column lengths varying from 25 to 30 nm. The grain growth kinetics and the oxidation kinetics were studied by time resolved SR diffraction measurements with n-Cr samples annealed at 400, 600, and 800 °C. The grain growth process is relatively fast and it occurs within the first 10 min of annealing. The final crystallite size depends only on the annealing temperature and not on the initial grain size or on the oxygen content. The final volume-averaged column lengths observed after 50 min annealing are 40(4), 80(1), and 120(2) nm for temperatures 400, 600, and 800 °C, respectively. It is shown that annealing ex situ of n-Cr at 800 °C both under vacuum and in air gives a grain growth process with the same final crystallite sizes. The formation of the Cr2O3 and CrH phases is observed during annealing.  相似文献   

18.
Mung bean protein is considered a highly nutritive food ingredient, but its solution properties are not well defined. In this study, suspensions of mung bean protein isolate (MPI, 10%, w/v) were subjected to high intensity ultrasound (20 kHz, 30% amplitude) at varied durations (5, 10, 20, and 30 min) with controlled temperatures (30, 50, and 70 °C) to determine the effects of thermosonication treatment on physical properties of the protein solution. Results showed that thermosonication treatment significantly reduced the particle size and free sulfhydryl content of MPI in a time-dependent manner. Ultrasound increased surface hydrophobicity, and the exposure of nonpolar groups led to the formation of soluble aggregates. Changes in secondary structure of MPI were minimal at 30 and 50 °C but were significant at 70 °C. The dissociation of native components followed by reaggregation into soluble particles following ultrasound treatment at 70 °C resulted in remarkable improvements of protein solubility (>2 fold), clarity, and stability of the MPI suspensions. The findings indicated that thermosonication could be a promising technology for the processing of mung bean protein beverage.  相似文献   

19.
Nickel hydroxide powder is prepared by chemical precipitation method, and the effect of synthesis temperature on the phase structure and electrochemical performances of nickel hydroxide is investigated. The phase structure is characterized by X-ray diffraction (XRD), and the electrochemical performances are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and charge/discharge tests. The XRD results show that low temperatures (0–20 °C) induce the precipitation of badly crystallized nickel hydroxide while at high temperatures (40–60 °C) crystallized β-nickel hydroxide is formed. Electrochemical performance tests show that the nickel hydroxide synthesized at low temperature has better electrochemical reversibility, lower electrochemical reaction impedance, and higher discharge capacity than that of the nickel hydroxide synthesized at high temperature.  相似文献   

20.
The charge/discharge characteristics of the sulfur composite cathodes were investigated at different temperatures and different current densities. The composite presented the discharge capacities of 854 and 632 mAh g−1 at 60 and −20 °C, respectively, while it had the discharge capacities of 792 mAh g−1 at 25 °C. The composite presented the discharge capacities of 792 and 604 mAh g−1 at 55.6 and 667 mA g−1, respectively, at room temperature. The results showed that the sulfur composite cathodes presented good charge/discharge characteristics between 60 and −20 °C and at a high c-rate up to 667 mA g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号