首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Boikov  Yu. A.  Lil’enfors  T.  Olsson  E.  Klaeson  T.  Danilov  V. A. 《Physics of the Solid State》2011,53(10):2168-2173
A significant (∼1.8%) positive unit between the parameters of the crystal lattice is the reason of tetragonal distortion (a /a ≈ 1.04) and reduction in the volume of the unit cell of La0.67Ca0.33MnO3 films (15 nm) quasicoherently grown on the (001) surface of a LaAlO3 substrate. The films consist of single-crystal blocks with the lateral size of 30–50 nm. The atomically smooth LaAlO3-La0.67Ca0.33MnO3 interphase boundary has no misfit dislocations. At T = 4.2 K, the transformation of nonferromagnetic phase inclusions into ferromagnetic ones in a constant magnetic field H is accompanied by a stable reduction in the electrical resistivity ρ of manganite films with time, so that the curve ρ(t) is well approximated by the relationship ρ(t) ∼ ρ1(tt 0)1/2, (where t 0 is the time for establishment of the specified value (μ0 H = 5 T) of the magnetic field and ρ1 is a coefficient independent of H). The magnetocrystalline anisotropy due to the elastic deformation of films by the substrate and stratification of electronic phases are the reasons of the distinct hysteresis in the dependences ρ(μ0 H, T < 100 K) obtained on μ0 H scanning in the sequence 5 T → 0 → −5 T → 0 → 5 T. At T = 50 K and μ0 H = 0.4 T, the magnetoresistance MR = 100% [ρ(μ0 H) − ρ(μ0 H = 0)]/ρ(μ0 H = 0) of LCMO films attains 150%.  相似文献   

2.
The structure, orientation, and the response of electroresistance to magnetic field H and varying temperature T have been studied for 30-nm-thick La0.67Ba0.33MnO3 (LBMO) films. The deviation of the [001] direction in manganite layers from the normal to the plane of the (LaAlO3)0.29 + (SrAl0.5Ta0.5O3)0.71 substrate strictly corresponds to the vicinal angle of the latter. The minimum yield determined from 227-keV proton scattering spectra is 0.025, signifying a high order of the cationic sublattice in the films. The biaxial compression of stable nuclei of the manganite phase affects their stoichiometry, thus contributing to the depletion of LBMO films in the alkaline-earth element. The maximum electroresistance values have been observed in the films grown at T max ≈ 320 K, a temperature about 20 K lower than the Curie temperature of the corresponding bulk single crystals, and the maximum magnetoresistance (MR ≈ −0.42, μ0 H = 2 T) occurs at T ≈ 300 K. At low temperatures (T < T max/3) and μ0 H < 0.45 T, the electroresistance response of LBMO films to a magnetic field materially depends on the anisotropic magnetoresistance and the intensity of hole scattering from domain walls; when μ0 H > 0.5 T, the major current-carrier relaxation mechanism is the interaction with magnons.  相似文献   

3.
The magnetoresistance Δρ/ρ of single-crystal samples of praseodymium and neodymium hexaborides (PrB6 and NdB6) has been measured at temperatures ranging from 2 to 20 K in a magnetic field of up to 80 kOe. The results obtained have revealed a crossover of the regime from a small negative magnetoresistance in the paramagnetic state to a large positive magnetoresistive effect in magnetically ordered phases of the PrB6 and NdB6 compounds. An analysis of the dependences Δρ(H)/ρ has made it possible to separate three contributions to the magnetoresistance for the compounds under investigation. In addition to the main negative contribution, which is quadratic in the magnetic field (−Δρ/ρ ∝ H 2), a linear positive contribution (Δρ/ρ ∝ H) and a nonlinear ferromagnetic contribution have been found. Upon transition to a magnetically ordered state, the linear positive component in the magnetoresistance of the PrB6 and NdB6 compounds becomes dominant, whereas the quadratic contribution to the negative magnetoresistance is completely suppressed in the commensurate magnetic phase of these compounds. The presence of several components in the magnetoresistance has been explained by assuming that, in the antiferromagnetic phases of PrB6 and NdB6, ferromagnetic nanoregions (ferrons) are formed in the 5d band in the vicinity of the rareearth ions. The origin of the quadratic contribution to the negative magnetoresistance is interpreted in terms of the Yosida model, which takes into account scattering of conduction electrons by localized magnetic moments of rare-earth ions. Within the approach used, the local magnetic susceptibility χloc has been estimated. It has been demonstrated that, in the temperature range T N < T < 20 K, the behavior of the local magnetic susceptibility χloc for the compounds under investigation can be described with good accuracy by the Curie-Weiss dependence χloc ∝ (T − Θ p )−1.  相似文献   

4.
Electrical resistivity ρ and Hal coefficient R are measured as a function of the temperature (T = 1.7−310 K) and the magnetic field (up to H = 28 kOe) in zero-gap semiconductor CuFeS2 samples subjected to hydrostatic compression and under various heat-treatment conditions. At low temperatures, anomalies are observed in the kinetic effects related to the presence of ferromagnetic clusters: the magnetoresistance at T = 4.2 K and T = 20.4 K acquires a hysteretic character and thermopower α changes its sign at T < 15 K. The temperature dependence of conduction-electron concentration n in CuFeS2 has a power form in the temperature range T = 14−300 K, which is characteristic of the intrinsic conductivity in zero-gap semiconductors. In CuFeS2, we have n(T) ∝ T 1.2; in isoelectron compound Cu1.13Fe1.22Te2, we have n(T) ∝ T 1.93. Heat treatment is found to affect the intrinsic conductivity of CuFeS2, as the action of hydrostatic compression (carrier concentration changes); that is, the carrier concentration changes. However, a power form of the n(T) and ρ(T) dependences is retained.  相似文献   

5.
The character of the evolution of a system of weak links in granular high-temperature superconductors under the action of an external magnetic field H ext has been studied by measuring the current-voltage characteristics E(j)Hext = constE{(j)_{{H_{ext}} = const}} of YBa2Cu3O7 − δ (δ ≈ 0.05) ceramic samples. The measurements have been performed at T = 77.3 K in a range of very weak magnetic fields 0 < H ext ≲ 0.5H c2J, where H c2J is the upper critical field of the Josephson weak links. The results have been used to construct the field dependences of the magnetoresistance Δρ(H ext) of the superconducting ceramics. It has been established that the parameters of the power equation E = A(jj cJ)ν and the magnetoresistance Δρ are nonmonotonic functions of the external magnetic field. The presence of extrema in the curves A(H ext), j cJ(H ext), ν(H ext), and Δρ(H ext) indicates that different systems of weak links between grain boundaries, which are capable of forming extended Josephson contacts, undergo sequential transitions to a resistive state with an increase in H ext.  相似文献   

6.
This paper reports on a study of the influence of oxygen deficiency on the magnetization, paramagnetic susceptibility, electrical resistivity, magnetoresistance, and volume magnetostriction of the La0.9Sr0.1MnO3 − y manganite with y = 0.03, 0.10, and 0.15. The magnetization M(T) behaves in a complex way with temperature; for T < 80 K, it only weakly depends on T, and at 80 ≤ T ≤ 300 K, the M(T) curve shows a falloff. Within the interval 240 K ≤ T ≤ 300 K, the long-range magnetic order breaks up into superparamagnetic clusters. For T < 80 K, the magnetic moment per formula unit is about one-fourth that which should be expected for complete ferromagnetic alignment of Mn ion moments. Although the composition with y = 0.03, in which part of acceptor centers is compensated by donors (oxygen vacancies), the negative magnetoresistance Δρ/ρ and volume magnetostriction ω are observed to pass through maxima near the Curie point, their values are one to two orders of magnitude smaller than those for the y = 0 composition. In compositions with y = 0.10 and 0.15 with electronic doping, the values of Δρ/ρ and ω are smaller by one to two orders of magnitude than those observed for the y = 0.03 composition. They do not display giant magnetoresistance and volume magnetostriction effects, which evidences the absence of ferrons near unionized oxygen vacancies. This allows the conclusion that the part played by both compensated and uncompensated doubly charged donors consists in forming dangling Mn-O-Mn bonds, which lead to a decrease in the Curie temperature with increasing y and to the formation above it of superparamagnetic clusters of the nonferron type.  相似文献   

7.
The current-voltage characteristics of granular YBa2Cu3O6.95 high-temperature superconductor samples have been measured at a temperature of 77.3 K in external transverse magnetic fields H ext with a strength of up to H ext ≈ 500 Oe for low transport current densities (0.1 A/cm2j ≤ 0.6 A/cm2). The current-voltage characteristics obtained have been used to construct dependences of the magnetoresistance ρ on the quantities j (ρ(j) Hext=const) and H ext(ρ(H ext) j = const). It has been revealed that the current and field dependences of the magnetoresistance exhibit anomalies at H extH c1g , where H c1g is the lower critical field of superconducting grains. A comparative analysis of the dependences ρ(j)H ext = const and ρ(H ext) j = const has made it possible to develop concepts regarding the influence of the processes of redistribution of the magnetic field between grain boundaries and superconducting grains on the transport and galvanomagnetic properties of granular high-temperature superconductors. It has been established that the field dependences of the magnetoresistance exhibit specific features associated with the beginning of penetration of Josephson vortices into grain boundaries in the magnetic field H c1J and with the breaking of a continuous chain of Josephson junctions in the magnetic field H c2J .  相似文献   

8.
Results of investigation of resistivity and magnetoresistance of manganites La1 − x K x MnO3 (x = 0.050–0.175) are presented. Behavior of resistivity ρ(T) in the paramagnetic and ferromagnetic phases has been described. To describe ρ(T) near the phase-transition temperature, notions of the percolation theory have been used. Two maxima have been found in the dependence ρ(T); their appearance has been attributed to the ceramic nature of the studied samples. The observed increase in magnetoresistance with a decrease in temperature is caused by intergranular spin-polarized tunneling of charge carriers.  相似文献   

9.
A pronounced step-like (kink) behavior in the temperature dependence of resistivity ρ(T) is observed in the optimally doped Sm1.85Ce0.15CuO4 thin films around T sf = 87 K and attributed to the manifestation of strong-spin fluctuations induced by Sm3+ moments with the energy ħωsf = k B T sf ≃ 7 meV. The experimental data are found to be well fitted by the residual (zero-temperature) ρres, electron-phonon ρe-ph(T) = AT, and electron-electron ρe-e(T) = BT 2 contributions in addition to the fluctuation-induced contribution ρsf(T) due to thermal broadening effects (of the width ωsf). According to the best fit, the plasmon frequency, impurity scattering rate, electron-phonon coupling constant, and Fermi energy are estimated as ωp = 2.1 meV, τ 0 −1 = 9.5 × 10−14 s−1, λ = 1.2, and E F = 0.2 eV, respectively. The text was submitted by the authors in English.  相似文献   

10.
The SrRuO3 films with a thickness of 80 nm have been coherently grown on a TiO2-terminated SrTiO3(001) substrate. Biaxial mechanical stresses induce a considerable difference between the unit cell parameters of the SrRuO3 layer in the substrate plane (??3.904 ?) and along the normal to the substrate surface (??3.952 ?). The electrical resistivity of the SrRuO3 film decreases practically linearly with increasing magnetic field strength H when the latter is parallel to the current I b and the projection of the easy magnetization axis in the substrate plane. At T = 4.2 K, ??0 H = 14 T, and the magnetic field oriented along the hard magnetization axis, the negative anisotropic magnetoresistance of the grown layers reaches 16% and exerts a notice-able effect on the response of electrical resistivity of the SrRuO3 film to the magnetic field.  相似文献   

11.
The magnetic, electrical, and optical properties of Ca1 − x Ce x MnO3 (x≤0.12) manganite single crystals are investigated with the aim of revealing the specific features of the multiphase electronic and magnetic state as a function of the cerium concentration and the atmosphere used for growing single crystals. It is found that the concentration dependence of the low-temperature magnetization M(x) of the single crystals is shifted toward the high-concentration range as compared to the corresponding dependence of the polycrystals, which is explained by the predominant cation deficiency. The electrical resistivity and the reflection spectra of the single crystals in the infrared spectral range indicate that charge carriers exhibit a band nature at temperatures close to room temperature. The temperature dependence of the electrical resistivity of the single crystal with x = 0.08, which has the maximum magnetization in the studied series of Ca1 − x Ce x MnO3 compounds, unlike polycrystals, exhibits a metallic behavior over the entire temperature range. The G-type antiferromagnetic phase with the Néel and Curie temperatures T N(G) = T C = 100 K is characterized by maxima of the electrical resistivity ρ and the magnetoresistance Δρ/ρ = |(ρ0 − ρ H )/ρ0| = 38% in the magnetic field H = 90 kOe. The magnetoresistance Δρ/ρ of the single crystals at cerium concentrations x = 0.10 and 0.12 with variations in temperature exhibit three specific features: near the temperature of charge ordering T co, near the temperature of the magnetic phase transition to the C-type antiferromagnetic phase T N(C), and near the temperature of the phase transition to the magnetic charge-ordered phase T N(MCO). An anomalous temperature dependence of the magnetization is revealed for a single crystal with x = 0.10 grown in oxygen at a pressure of 5 atm, which is explained by the presence of regions with hole conductivity due to cation deficiency. The inhomogeneous electronic and magnetic state is associated with the interrelation of the charge, orbital, and spin orderings. Original Russian Text ? N.N. Loshkareva, A.V. Korolev, N.I. Solin, E.V. Mostovshchikova, S.V. Naumov, N.V. Kostromitina, A.M. Balbashov, 2009, published in Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 135, No. 1, pp. 98–107.  相似文献   

12.
The structure, electrical resistivity, and magnetoresistance of predominantly oriented La0.67Ca0.33MnO3(30 nm)/LaAlO3 films are investigated after partial relaxation of biaxial mechanical stresses. The negative magnetoresistance MR of the films reaches a maximum at T = 235–240 K. The full width at half-maximum of the peak in the curve MR(T) for a film is five to six times greater than that for a manganite layer grown on a substrate with a small lattice mismatch. For T < 150 K, the temperature dependence of the electrical resistivity ρ of the films is fitted well by the relationship ρ = ρ0 + ρ1 (H)T 4.5, where ρ0 ≡ ρ(T = 4.2 K) and ρ1(H) is a parameter that is independent of temperature but dependent on the magnetic field H. The parameter ρ1(H = 0) for the La0.67Ca0.33MnO3(30 nm)/LaAlO3 films is several times larger than that for thin manganite layers only weakly strained by the substrate. The electrical resistivity ρ1 decreases almost linear as the quantity μ0 H increases in the field range 1–5 T.  相似文献   

13.
Measurements of the basal-plane resistivity ρ a(T,H) performed on highly oriented pyrolitic graphite, with magnetic field Hc-axis in the temperature interval 2–300K and fields up to 8 T, provide evidence for the occurrence of both field-induced and zero-field superconducting instabilities. Additionally, magnetization M(T,H) measurements suggest the occurrence of Fermi surface instabilities which compete with the superconducting correlations. Fiz. Tverd. Tela (St. Petersburg) 41, 2135–2138 (December 1999)  相似文献   

14.
The effect of atomic disorder on the electron transport and the magnetoresistance (MR) of Co2CrAl Heusler alloy (HA) films has been investigated. We show that Co2CrAl films with L21 order exhibit a negative value for the temperature coefficient of resistivity (TCR) in a temperature range of 10 < T < 290 K, and the temperature dependence of electric conductivity varies as T 3/2 similarly to that of the zero-gap semiconductors. The atomic or the site disorder on the way of L21 → B2 → A2 → amorphous state in Co2CrAl HA films causes the deviation from this dependence: reduction in the absolute value of TCR as well as decrease in the resistivity down to ϱ(T = 293 K) ∼ 200 μΩ cm in comparison to ϱ(T = 293 K) ∼ 230 μΩ cm typical for the Co2CrAl films with L21 order. The magnetic-field dependence of MR of the Co2CrAl films with L21 order is determined by two competing contributions: a positive Lorentz scattering and a negative s-d scattering. The atomic disorder in Co2CrAl films drastically changes MR behavior due to its strong influence on the magnetic properties.  相似文献   

15.
The structure, electrical resistivity, and magnetoresistance of La0.67Sr0.33MnO3 heteroepitaxial films (120-nm thick) practically unstrained by lattice mismatch with the substrate were studied. A strong maximum of negative magnetoresistance of ≈27% (for μ0H = 4 T) was observed at T ≈360 K. While the magnetoresistance decreased monotonically in magnitude with decreasing temperature, it was still in excess of 2% at 150 K. For T < 250 K, the temperature dependence of the electrical resistivity ρ of La0.67Sr0.33MnO3 films is fitted well by the relation ρ = ρ0 + ρ 1(H)T2.3, where ρ0 = 1.1×10?4 Ω cm, ρ1(H = 0) = 1.8×10?9 Ω cm/K2.3, and ρ10H = 4 T)/ρ1(H = 0) ≈0.96. The temperature dependence of a parameter γ characterizing the extent to which the electrical resistivity of the ferromagnetic phase of La0.67Sr0.33MnO3 films is suppressed by a magnetic field (μ 0H = 5 T) was determined.  相似文献   

16.
Results are presented of an investigation of the magnetic properties of dilute frustrated ferrimagnetic spinels Li0.5Fe2.5−x GaxO4 (x=0.8–1.2), which characterize the main parameters of the ferrimagnetic state and provide evidence of local violation of collinear spin ordering and frustrations. In particular, measurements were made of the concentration dependences of the magnetic moment n 0(x) and the Curie point T c (x), the magnetization isotherms σ T (H) at T=4.2 K and H⩽10 kOe, and also the low-and high-field magnetization polytherms σ H (T). It was established that for x⩾0.8 in fields exceeding the technical saturation field H s ∼2 kOe, the temperature dependences of the high-field magnetization σ H (T) between 4.2 and 230 K cannot be described by the Bloch T 3/2 law whereas this law is satisfied for undiluted Li spinel (x=0). Over the entire temperature range (4.2–230 K) the experimental curves σ H (T) may be approximated by σ H (T)=σ 0(1−AT 3/2BT 5/2) for x=0.8–1.0 and σ H (T)=σ 0[1−CT 3/2exp(μ(H−H 0)/k B T)] for x=1.1, 1.2, where μH 0∼15 K is the internal field produced by competition between exchange interactions and frustrations. Fiz. Tverd. Tela (St. Petersburg) 40, 1075–1079 (June 1998)  相似文献   

17.
A new spintronics material with the Curie temperature above room temperature, the ZnSiAs2 chalcopyrite doped with 1 and 2 wt % Mn, is synthesized. The magnetization, electrical resistivity, magnetoresistance, and the Hall effect of these compositions are studied. The temperature dependence of the electrical resistivity follows a semiconducting pattern with an activation energy of 0.12–0.38 eV (in the temperature range 124 K ≤ T ≤ 263 K for both compositions). The hole mobility and concentration are 1.33, 2.13 cm2/V s and 2.2 × 1016, 8 × 1016 cm−3 at T = 293 K for the 1 and 2 wt % Mn compositions, respectively. The magnetoresistance of both compositions, including the region of the Curie point, does not exceed 0.4%. The temperature dependence of the magnetization M(T) of both compositions exhibits a complicated character; indeed, for T ≤ 15 K, it is characteristic of superparamagnets, while for T > 15 K, spontaneous magnetization appears which correspond to a decreased magnetic moment per formula unit as compared to that which would be observed upon complete ferromagnetic ordering of Mn2+ spins or antiferromagnetic ordering of spins of the Mn2+ and Mn3+ ions. Thus, for T > 15 K, it is a frustrated ferro- or ferrimagnet. It is found that, unlike the conventional superparamagnets, the cluster moment μ c in these compositions depends on the magnetic field: ∼12000–20000μB for H = 0.1 kOe, ∼52–55μB for H = 11 kOe, and ∼8.6–11.0μB at H = 50 kOe for the compositions with 1 and 2 wt % Mn, respectively. The specific features of the magnetic properties are explained by the competition between the carrier-mediated exchange and superexchange interactions.  相似文献   

18.
We report synthesis, structure/micro-structure, resistivity under magnetic field [ρ(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity κ(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy (TEM) reveals electron micrographs showing various types of defect features along with the presence of 3–4 nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2 K by magnetic susceptibility χ(T), resistivity ρ(T), thermoelectric power S(T), and thermal conductivity κ(T) measurements. The power law fitting of ρ(T) give rise to Debye temperature (ΘD) at 1400 K which is found consistent with the theoretical fitting of S(T), exhibiting Θ D of 1410 K and carrier density of 3.81 × 1028/m3. Thermal conductivity κ(T) shows a jump at 38 K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1–2 T (Tesla) fields at temperatures (T) of up to 10 K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20 K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.  相似文献   

19.
In the temperature range of T = 150–400 K, the dependence of spectral widths (cm−1) on temperature, 182 + 0.38(±0.01)T and 217 + 0.48(±0.01)T, respectively, has been obtained for dimole emission of O2(a, 0) + O2(a, 0) → O2(X, 1) + O2(X, 0) + hν (λ = 703 nm) and O2(a, 0) + O2(a, 0) → O2(X, 0) + O2(X, 0) + hν (λ = 634 nm). It was shown that the ratio of dimole emission rate constants does not depend on temperature in the range of 150–400 K and is 1.06 ± 0.01.  相似文献   

20.
Vortex and pseudogap states in electron-doped Sm2−x Ce x CuO4−δ (x ∼ 0.14) are investigated by the interlayer transport in magnetic fields up to 45 T. To extract intrinsic properties, we fabricated small 30 nm-high mesa structures, sufficiently thin to be free of the recently reported partial decomposition problems. On cooling, the c-axis resistivity ρc of the mesa structures reveals a semiconductive upturn above Tc, followed by a sharp superconducting transition at 20 K. When the magnetic fieldH is applied along the c-axis, ρc(T) shows a parallel shift without significant broadening, as also observed in the hole-doped underdoped cuprates. Above the transition we observe negative magnetoresistance (MR), which can be attributed to the field suppression of the pseudogap, whose magnitude is as small as 38 K. Our results in thex ∼ 0.14 samples closely correspond to the interlayer transport behavior in the ‘overdoped’ regime of hole-doped Bi2Sr2 CaCu2 O8+y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号