首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract

The infrared spectra (4000 - 50 cm?1) of the square planar rhodium(I) complexes cis-[Rh(CO)2 (pyridine) (X)] (X = Cl, Br) and their isotopomers with pyridine-d 5 and 13CO have been determined. Assignments are based on earlier studies on pyridine and its complexes and on the shifts in infrared bands which are caused by the isotopic substitutions employed. Normal coordinate analysis following the procedure of Becher and Mattes has been used to confirm the empirical assignments. The two v(RhC) bands are observed near 490 and 450 cm?1. v(RhN) is found near 210 cm?1 and v(RhX) occurs at 310 (X = Cl) and 235 (X = Br) cm?1. At frequencies below 200 cm?1, the bands are assigned to bending modes in the following sequence: δ (RhN) > δ (CRhC) > δ (RhCl) > γ (RhCl) > γ (RhN).  相似文献   

2.
ABSTRACT

Priceite is a calcium borate mineral and occurs as white crystals in the monoclinic pyramidal crystal system. We have used a combination of Raman spectroscopy with complimentary infrared spectroscopy and scanning electron microscopy with Energy-dispersive X-ray Spectroscopy (EDS) to study the mineral priceite. Chemical analysis shows a pure phase consisting of B and Ca only. Raman bands at 956, 974, 991, and 1019 cm?1 are assigned to the BO stretching vibration of the B10O19 units. Raman bands at 1071, 1100, 1127, 1169, and 1211 cm?1 are attributed to the BOH in-plane bending modes. The intense infrared band at 805 cm?1 is assigned to the trigonal borate stretching modes. The Raman band at 674 cm?1 together with bands at 689, 697, 736, and 602 cm?1 are assigned to the trigonal and tetrahedral borate bending modes. Raman spectroscopy in the hydroxyl stretching region shows a series of bands with intense Raman band at 3555 cm?1 with a distinct shoulder at 3568 cm?1. Other bands in this spectral region are found at 3221, 3385, 3404, 3496, and 3510 cm?1. All of these bands are assigned to water stretching vibrations. The observation of multiple bands supports the concept of water being in different molecular environments in the structure of priceite. The molecular structure of a natural priceite has been assessed using vibrational spectroscopy.  相似文献   

3.
The mineral barahonaite is in all probability a member of the smolianinovite group. The mineral is an arsenate mineral formed as a secondary mineral in the oxidized zone of sulphide deposits. We have studied the barahonaite mineral using a combination of Raman and infrared spectroscopy. The mineral is characterized by a series of Raman bands at 863 cm?1 with low wavenumber shoulders at 802 and 828 cm?1. These bands are assigned to the arsenate and hydrogen arsenate stretching vibrations. The infrared spectrum shows a broad spectral profile. Two Raman bands at 506 and 529 cm?1 are assigned to the triply degenerate arsenate bending vibration (F 2, ν4), and the Raman bands at 325, 360, and 399 cm?1 are attributed to the arsenate ν2 bending vibration. Raman and infrared bands in the 2500–3800 cm?1 spectral range are assigned to water and hydroxyl stretching vibrations. The application of Raman spectroscopy to study the structure of barahonaite is better than infrared spectroscopy, probably because of the much higher spatial resolution.  相似文献   

4.
ABSTRACT

The adsorption of benzoic acid on both sodium and calcium montmorillonites has been studied by near infrared spectroscopy complimented with infrared spectroscopy. Upon adsorption of benzoic acid, additional near-infrared bands are observed at 8665 cm?1 and assigned to an interaction of benzoic acid with the water of hydration. Upon adsorption of the benzoic acid on Na-Mt, the NIR bands are now observed at 5877, 5951, 6028, and 6128 cm?1 and are assigned to the overtone and combination bands of the CH fundamentals. Additional bands at 4074, 4205, 4654, and 4678 cm?1 are attributed to CH combination bands resulting from the adsorption of the benzoic acid. Benzoic acid is used as a model molecule for adsorption studies. The application of near-infrared spectroscopy to the study of adsorption has the potential for the removal of acids from polluted aqueous systems.  相似文献   

5.
Abstract

Powder-absorption infrared (IR) spectra of perovskites CaFexTi1?x O3?x/2 (0≤x≤1) annealed at different temperatures were investigated at room temperature in the range 135–2000 cm?1. The spectra change as a function of composition, annealing temperature and structural state (order-disorder of oxygen vacancies). Autocorrelation analysis has been used to determine variations of average line widths of groups of peaks in the primary IR spectra. The band widths increase on increasing Fe content in the region of the structures with disordered oxygen vacancies and they decrease on going through the order-disorder boundary. High degrees of local structural heterogeneity are suggested by the effective line widths of the phases at intermediate compositions. The intensity of bands at ~150 and ~443 cm?1 decreases with increasing Fe content in the compositional range of the disordered structures. Finally, for every annealing temperature, the frequency of the band at ~600cm?1 systematically shifts to higher values on increasing Fe content, these values decreasing again for the fully ordered structures.  相似文献   

6.
Abstract

A comprehensive solvent, concentration, and temperature study has been made of the 850 to 400 cm?1 region of the infrared spectrum of cyclohexyl iodide. This causes us to reject the assignment of Larnaudie and of Chiurdoglu and Reisse of v(C-I)eq at 654 cm?1 and v(C-I)ax at 638 cm?1, and to suggest that the two modes are almost coincident in n-hexane solution at 656.2 cm?1 (eq) and 655.6 cm?1 (ax).  相似文献   

7.
Abstract

The results of Molecular Dynamics simulations of borate glass (B2O3) using three-particle interactions are presented. These calculations yield a glass consisting of randomly connected BO3 triangles. Infrared and Raman spectra have been calculated and compared with experimental spectra. The calculated infrared spectra show two main bands, one at 650 cm?1 and one at 1250 cm?1, in agreement with experiment. The Raman spectra reproduce the experimental peak at 805 cm?1 but the peak width is a factor of ten too large. Apparently, the simulated glasses have less short range order than the laboratory glasses.  相似文献   

8.
The infrared spectrum of carbon suboxide has been recorded from 1800 to 2600 cm?1 at a resolution of 0.003 cm?1. About 7% of the ca. 40 000 lines observed have been assigned and analyzed, belonging to 36 different bands. Most of these are associated with the fundamental ν3, at 2289.80 cm?1, and the combination band ν2 + ν4, at 2386.61 cm?1, each of which give rise to a system of sum bands, difference bands, and hot bands involving the low-wave-number fundamental ν7 at 18 cm?1. A few other tentative assignments are made. The bands have been analyzed for vibrational and rotational constants.  相似文献   

9.
Abstract

Vibrational spectra of 9-Fluorenone, 9-Fluorenone-18O and 9-Fluorenone-d8 have been recorded in the solid state and solutions in the infrared and (4000–100 cm?1) and in the Raman (4000–50 cm?1). Differential infrared linear dichroic spectra have also been measured. The assignment of the vibrational bands is performed using the group vibrational concept, isotopic shifts and polarization features of the normal modes.  相似文献   

10.
Abstract

In this work we report optical absorption spectroscopy study of thermal and irradiation effects on samples of amethyst from Minas Gerais and Rio Grande do Sul, Brazil. Three bands were studied: 10500 cm?1 (k), 18300 cm?1 (θ) and 28000 cm?1 (ζ). Thermal and irradiation effects shows that the θ and ζ bands belongs to a same center and the k band to another center. The isothermal decay and irradiation growth of these band reveal a complex kinetics. The optical absorption bands of amethyst from Minas Gerais do not recover the prmitive absorbance after being bleached at 470°C and irradiated. This sample heated at 470°C in highly reducing atmosphere gets a yellow-brown color. The amethyst from Rio Grande do Sul treated at 400°C gets, also, a yellow-brown color. We suggest this color is probalbly due to the formation of Fe2O3 submicroscopc segregate crystals due to the diffusion of Fe ions and oxygen vacancies.  相似文献   

11.
Abstract

The Fourier transform (FT) infrared and Raman spectra of newberyite, MgHPH4 - 3H2O are studied in the region where the stretching vibrations of the water molecules (protiated and deuterated) and the O-H/O-D stretches of the hydrogenphosphate anions are expected to appear. The O-H stretching vibrations give rise to a complex feature known as the A,B,C trio. Since neither of the maxima found below 3000 cm?1 represents a true band arising from a given fundamental, it is pointless to correlate their frequencies with the observed O…O distances. In the water stretching region, the two bands with highest frequencies undoubtedly correspond to the anti symmetric and symmetric stretch of one type of the water molecules. The stretching vibrations of one of the remaining two types of H2O molecules are clearly uncoupled and the O-H oscillator involved in the weaker hydrogen bond is responsible for a band at 3376 cm?1 whereas the rest of the water stretchings are apparently overlapped yielding the complex band below 3320 cm?1. Thus the situation is again complicated and the correlations between the frequencies and the Ow…O distances are inappropriate. The two bands at highest frequencies (3522 and 3483 cm?1 at RT) exhibit a positive temperature coefficient.

  相似文献   

12.
The mineral glauberite is one of many minerals formed in evaporite deposits. The mineral glauberite has been studied using a combination of scanning electron microscopy with energy dispersive X-ray analysis and infrared and Raman spectroscopy. Qualitative chemical analysis shows a homogeneous phase, composed by sulfur, calcium, and sodium. Glauberite is characterized by a very intense Raman band at 1002 cm?1 with Raman bands observed at 1107, 1141, 1156, and 1169 cm?1 attributed to the sulfate ν3 antisymmetric stretching vibration. Raman bands at 619, 636, 645, and 651 cm?1 are assigned to the ν4 sulfate bending modes. Raman bands at 454, 472, and 486 cm?1 are ascribed to the ν2 sulfate bending modes. The observation of multiple bands is attributed to the loss of symmetry of the sulfate anion. Raman spectroscopy is superior to infrared spectroscopy for the determination of glauberite.  相似文献   

13.

The products of the radiolysis and photolysis of crystalline sodium, potassium, rubidium, cesium nitrates have been investigated by the diffuse reflectance infrared Fourier transform spectroscopy. The bands in the 1260-1220 and 804-809 cm?1 regions observed after the n -irradiation and photolysis by a light with the wave length 253.7 nm of crystalline alkali nitrates were identified as the vibrational modes of NO? 2 x 3 and x 2, respectively. The frequency of the x 3 oscillation of nitrite ions decreases from 1260 cm?1 up to 1220 cm?1 with the increase of the atomic weight or polarizability of a cation. The detection limit of the nitrite ions (1 ‐ 10?7 mol g?1) for the diffuse reflection method has been determined. The bands observed in KNO3, RbNO3 and CsNO3 spectra in the 947-940 and 722-737 cm?1 regions appearing only after photolysis are due to stretch oscillations of the peroxide bond O-O and wagging oscillations of the -ON=O group of peroxynitrite accordingly.  相似文献   

14.
Abstract

When organic materials are charred at low or medium temperatures (up to about 450–500°C), their infrared (IR) spectra show a plethora of bands below about 2000 cm?1, and there are additional bands in the OH and CH stretching regions, above about 2600 cm?1. The in-between region, from about 2600 to 200 cm?1, is quite “empty” (except for an occasional atmospheric CO2 band caused by instrument imbalance). The reason for this emptiness is, simply, that there are very few species that have fundamentals in that region, as is well known from group frequency tables; and those that do absorb, such as metal hydrides, are quite unlikely to exist in organic precursors. Some overtones or combinations may appear, but these are usually very weak. We have, however, observed some bands in the empty region on several occasions.  相似文献   

15.
《Molecular physics》2012,110(17):2063-2069
The high resolution infrared absorption spectrum of CH2D81Br has been recorded by Fourier transform spectroscopy in the range 550–1075?cm?1, with an unapodized resolution of 0.0025?cm?1, employing a synchrotron radiation source. This spectral region is characterized by the ν6 (593.872?cm?1), ν5 (768.710?cm?1) and ν9 (930.295?cm?1) fundamental bands. The ground state constants up to sextic centrifugal distortion terms have been obtained for the first time by ground-state combination differences from the three bands and subsequently employed for the evaluation of the excited state parameters. Watson's A-reduced Hamiltonian in the Ir representation has been used in the calculations. The ν 6?=?1 level is essentially free from perturbation whereas the ν 5?=?1 and ν 9?=?1 states are mutually interacting through a-type Coriolis coupling. Accurate spectroscopic parameters of the three excited vibrational states and a high-order coupling constant which takes into account the interaction between ν5 and ν9 have been determined.  相似文献   

16.
Abstract

The molybdate‐bearing mineral szenicsite, Cu3(MoO4)(OH)4, has been studied by Raman and infrared spectroscopy. A comparison of the Raman spectra is made with those of the closely related molybdate‐bearing minerals, wulfenite, powellite, lindgrenite, and iriginite, which show common paragenesis. The Raman spectrum of szenicsite displays an intense, sharp band at 898 cm?1, attributed to the ν1 symmetric stretching vibration of the MoO4 units. The position of this particular band may be compared with the values of 871 cm?1 for wulfenite and scheelite and 879 cm?1 for powellite. Two Raman bands are observed at 827 and 801 cm?1 for szenicsite, which are assigned to the ν3(E g ) vibrational mode of the molybdate anion. The two MO4 ν2 modes are observed at 349 (B g ) and 308 cm?1 (A g ). The Raman band at 408 cm?1 for szenicsite is assigned to the ν4(E g ) band. The Raman spectra are assigned according to a factor group analysis and are related to the structure of the minerals. The various minerals mentioned have characteristically different Raman spectra.  相似文献   

17.
ABSTRACT

Papagoite is a silicate mineral named after an American Indian tribe and was used as a healing mineral. Papagoite CaCuAlSi2O6(OH)3 is a hydroxy mixed anion compound with both silicate and hydroxyl anions in the formula. The structural characterization of the mineral papagoite remains incomplete. Papagoite is a four-membered ring silicate with Cu2+ in square planar coordination.

The intense sharp Raman band at 1053 cm?1 is assigned to the ν1 (A 1g) symmetric stretching vibration of the SiO4 units. The splitting of the ν3 vibrational mode offers support to the concept that the SiO4 tetrahedron in papagoite is strongly distorted. A very intense Raman band observed at 630 cm?1 with a shoulder at 644 cm?1 is assigned to the ν4 vibrational modes.

Intense Raman bands at 419 and 460 cm?1 are attributed to the ν2 bending modes.

Intense Raman bands at 3545 and 3573 cm?1 are assigned to the stretching vibrations of the OH units. Low-intensity Raman bands at 3368 and 3453 cm?1 are assigned to water stretching modes. It is suggested that the formula of papagoite is more likely to be CaCuAlSi2O6(OH)3 · xH2O. Hence, vibrational spectroscopy has been used to characterize the molecular structure of papagoite.  相似文献   

18.
We have used vibrational spectroscopy to study the formula and molecular structure of the mineral penkvilksite Na 2TiSi 4O 11·2H 2O. Penkvilksite is a mineral which may be used in the uptake of radioactive elements. Both Raman and infrared spectroscopies identify a band at ~3638 cm?1 attributed to an OH-stretching vibration of hydroxyl units. The inference is that OH units are involved in the structure of penkvilksite. The formula may be well written as Na 2TiSi 4O 10(OH)2·H 2O. The mineral is characterised by a very intense Raman band at 1085 cm?1 and a broad infrared band at 1080 cm?1 assigned to SiO-stretching vibrations. Raman bands at 620, 667 and 711 cm?1 are attributed to SiO and TiO chain bonds. Water-stretching vibrations are observed as Raman bands at 3197, 3265, 3425 and 3565 cm?1. Vibrational spectroscopy enables aspects of the molecular structure of the mineral penkvilksite to be ascertained. Penkvilksite is a mineral which can incorporate actinides and lanthanides from radioactive waste.  相似文献   

19.
We report results from measurements of the high resolution FTIR spectrum for the fully deuterated benzene molecule C6D6 in the range 450–3500 cm?1. Accurate spectroscopic constants have been obtained for the fundamental vibration ν11 at 496.208 cm?1 and improved ground state constants have been deduced from a fit of ground state combination differences. The J structure of the combination parallel bands ν2 + ν11 (at 2798.1 cm?1), ν5 + ν12 (1802.5 cm?1) and ν7, + ν16 (2619.3 cm?1) of C6D6 has been analysed as well, from which improved values of the band origin and of the B and D j constants of the excited states have been obtained. The strongest hot bands accompanying these parallel transitions have been assigned by means of the anharmonic force field calculated by Maslen et al. [1992, J. chem. Phys., 97, 4233]. In particular (ν11 + ν16) ? ν16 is assigned to the band at 492.4 cm?1 even though its shape is typical of a perpendicular transition (PAPE). New values for the ν5, ν12 and ν16 band origins are determined from the band origins of combination bands and from calculated anharmonic constants. Numerous anharmonic constants are derived from the assignment of hot band and combination transitions.  相似文献   

20.
The infrared spectrum of chloroform in the region of the parallel fundamental band ν3 around 367 cm?1 has been measured with a Fourier spectrometer at a resolution of 0.001 cm?1. An isotopically pure sample of CH35Cl3 was used. More than 5000 lines were assigned in the ν3 band. A reanalysis of the ground state constants was performed by combining 1671 combination differences from this work, 712 differences from a previous study of the ν2 band, and 80 millimetre wave lines from the literature. In the analysis of the ν3 band, a model of an unperturbed symmetric top band was applied. The data were fitted with a standard deviation of 0.18 × 10?3 cm?1, and the following leading parameters were obtained: ν0 = 367.295 550(8) cm?1, B 3B 0 = ?77.058(4) × 10?6 cm?1 and C 3C 0 = ?18.600(11) × 10?6 cm?1. In addition, several hot bands have been studied. The isotopic effects were studied also by analysing spectra of the isotopically natural sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号