首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
新型毒品的日益泛滥及快速更新对执法部门现场快速检测提出了越来越高的要求。以三种典型的新型毒品为例,利用密度泛函理论中的B3LYP杂化泛函,在6-31G基组下优化分子几何结构以及拉曼振动频率的计算,并利用拉曼光谱仪进行了实验检测,用以研究拉曼光谱技术在新型毒品快速检测中的应用价值。结果表明:各毒品样品的理论计算拉曼光谱与实验拉曼光谱基本吻合,理论计算光谱可以为实验光谱特征峰的归属提供参考;各毒品拉曼特征峰的峰位差异明显,其中冰毒特征峰为837和1003 cm-1,K粉最具有鉴别价值的特征峰为463,659和1 046 cm-1,而麻古最明显的特征峰为556,1 329和1 699 cm-1,拉曼光谱可被用于毒品的鉴别和认定;微量冰毒及K粉残留物的实验拉曼光谱与其常量时基本一致,拉曼光谱可被用于毒品微量残留物的准确识别;伪冰毒N-异丙基苄胺的拉曼特征峰853 cm-1与冰毒拉曼特征峰837 cm-1存在明显差异,因此拉曼光谱可被有效地用于以上毒品的检测;而聚丙烯材料制成的透明包装对自身存在强烈荧光干扰的麻古拉曼光谱有较大影响。  相似文献   

2.
This work deals with the vibrational spectroscopy of 2‐amino‐4,6‐dihydroxy pyrimidine (ADHP) by means of quantum chemical calculations. The mid‐ and far FTIR and FT‐Raman spectra were measured in the condensed state. The fundamental vibrational wavenumbers and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6‐311 + G** methods and basis set combinations, and were scaled using various scale factors, which yielded good agreement between the observed and calculated wavenumbers. The vibrational spectra were interpreted with the aid of normal coordinate analysis based on the scaled density functional force field. The results of the calculations were applied to simulate the infrared and Raman spectra of the title compound, which showed excellent agreement with the observed spectra. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
应用KBr压片法、熔融法分别测定了2,3-二氯吡嗪(2,3-DCP)结晶相和液相下400~4 000 cm-1范围内的傅里叶变换红外光谱(FTIR),及其600~4 000 cm-1内的傅里叶变换拉曼光谱(FT-Raman)。采用密度泛函(DFT)理论之B3LYP方法在6-311++G(2df,2pd)基组水平上优化了该分子的平衡几何结构,基于此结构应用谐性力场计算获得了2,3-DCP的振动频率、红外强度和拉曼活性并进一步计算了直到四阶的非谐性力场,将该力场带入标准旋振哈密顿量并利用二阶微扰理论获得了更加准确的振动频率,相应的红外、拉曼光谱。通过非谐力场获得的振动频率位置结合谐性强度与实验结果比对,对2,3-DCP的各振动带进行了详细指认,采用简正坐标分析方法得到各振动频率的势能分布(PED),首次对2,3-DCP的振动光谱进行了全面归属。结果同时显示:考虑非谐性效应后的理论结果大大提高了振动频率的预测性,用其获得的振动频率能很好的再现实验基频,其与实验值差异大多保持在10 cm-1以下,即使在谐振预期很差的高频区域,考虑非谐效应后这种差异也迅速降低到19 cm-1以下,这对正确归属和预期振动光谱是十分有帮助的。目前的结论也可推广应用到其他分子体系。  相似文献   

4.
The vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4 000~400 and 4 000~400 cm-1 respectively, for N-[4-[1-hydroxy-2-[(1-methyl ethyl) amino] ethyl] phenyl] methane sulfonamide (HPAEPMS) molecule. Theoretical calculations were performed by ab initio Density Functional Theory (DFT) method using 6-31G(d,p) basis set. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement.  相似文献   

5.
Theoretical investigations of atomic charges, conformers, frontier molecular orbitals, molecular geometries, thermodynamic properties, hyperpolarizabilities and harmonic vibrational frequencies of 6-methyluracil (6MU) have been carried out using ab initio Hartree-Fock (HF), density functional theory (DFT) and second order M?ller-Plesset (MP2) methods. All calculations were performed using the GAMESS-US program package with the basis sets 6-31G(d,p) and 6-311G(d,p). FT-IR and Raman spectra of 6MU were recorded in the regions 50–4000 cm−1 and 60–4000 cm−1 respectively. Optimized geometries were obtained using the global optimization procedure. The calculated structural parameters for two conformers of 6MU have been compared with experimentally observed values. The energy barrier (ΔE=ELUMO-EHOMO) between the HOMO and LUMO is predicted on the basis of theoretical calculations. The simulated TD-DFT spectrum has been compared with experimental electronic spectrum for 6MU. The calculated potential energy distribution (PED) values have been utilized to perform vibrational assignment of the infrared and Raman spectra.  相似文献   

6.
The Fourier Transform Infrared (FTIR) and Fourier transform Raman (FT-Raman) spectra of 1,3-Diphenyl Propenone were recorded in the regions 4 000~400 and 4 000~100 cm-1, respectively, in the solid phase. Molecular electronic energy, geometrical structure, harmonic vibrational spectra was computed at the DFT/ 6-31G(d,p) and three parameter hybrid functional Lee-Yang-Parr/6-31G(d,p) levels of theory. The vibrational studies were interpreted in terms of potential energy distribution (PED). The results were compared with experimental values with the help of scaling procedures. Most of the modes have wave numbers in the expected range and are in good agreement with computed values and also the molecular properties of Mulliken population analysis have been calculated. Besides, thermodynamic properties were performed.  相似文献   

7.
Fourier transform infrared (FT‐IR) and Fourier transform (FT) Raman spectra of 3‐{[(2‐hydroxyphenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using HF/6‐31G* and 6‐311G* basis sets and compared with experimental data. The assignments of the normal modes are done by potential energy distribution (PED)calculations. The prepared compound was identified by nuclear magnetic resonance (NMR) and mass spectra. Optimized geometrical parameters of the title compound are in agreement with reported structures. Shortening of CN bond lengths reveal the effect of resonance. The simultaneous IR and Raman activations of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability, infrared intensities and Raman activities are reported. The phenyl C C stretching modes are equally active as strong bands in both IR and Raman spectra, which are responsible for hyperpolarizability enhancement leading to nonlinear optical activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The FT Raman and FTIR spectra of flucytosine were recorded in the region 3500–100 cm−1 and 4000–400 cm−1, respectively. The optimized geometry, wavenumber and intensity of the vibrational bands of flucytosine were obtained by ab initio and density functional theory (DFT) levels with complete relaxation in the potential energy surface using the 6‐31G(d,p) and 6‐311G(d,p) basis sets. A complete vibrational assignment aided by the theoretical harmonic frequency analysis is proposed. The harmonic vibrational wavenumbers calculated are compared with experimental FTIR and FT Raman spectra. The observed and the calculated wavenumbers are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar‐type spectrograms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The solid phase Fourier transform infrared (FTIR) and Fourier transform (FT) Raman spectral analysis of 7‐chloro‐3‐methyl‐2H‐1,2,4‐benzothiadiazine 1,1‐dioxide (diazoxide), an antihypertensive agent was carried out along with density functional computations. The optimized geometry, wavenumber and intensity of the vibrational bands of diazoxide were obtained by DFT‐B3LYP level of theory with complete relaxation in the potential energy surface using 6‐31G(d,p) basis set. A complete vibrational assignment aided by the theoretical harmonic frequency analysis has been proposed. The harmonic vibrational wavenumbers calculated have been compared with experimental FTIR and FT Raman spectra. The observed and the calculated wavenumbers are found to be in good agreement. The experimental spectra coincide satisfactorily with those of calculated spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, the theoretical conformation analysis of free dapsone has been performed by single point energy calculations at both semi-empirical PM3 and DFT/B3LYP-3-21G theory levels and three stable conformers were determined. Both the IR and Raman spectra of the molecule in solid phase have been recorded. The IR intensities and harmonic vibrational wavenumbers of each conformer were calculated by DFT method at B3LYP/6-31++G(d,p) theory level. For the fundamental characterization, the total energy distribution (TED) calculations of the vibrational modes were done using parallel quantum mechanic solution program (SQM) and the fundamental modes were assigned. The theoretical results are in agreement with the experimental ones.  相似文献   

11.
Abstract

The i. r. spectra of benzotriazole have been measured from 4000 to 60 cm?1: polarized spectra of single crystals have been also obtained. The Raman spectra of polycrystalline samples and solutions have been investigated. The structural parameters and vibrational frequencies have been determined from ab-initio Hartree-Fock gradient calculations using the 6–31G* basis set. A detailed arsignment of most of the observed bands has been proposed on the basis of the i. r. dichroism, Raman polarization data and frequency calculations.

  相似文献   

12.
Abstract

The infrared spectra of 2-(methylthio)benzothiazole have been measured from 4000 to 180 cm?1 for liquid and polycrystalline samples, polarized spectra of oriented films have also been obtained. the Raman spectra of polycrystalline and liquid samples have been investigated. the structural parameters, energies and vibrational frequencies have been calculated from ab-initio RHF calculations using the 6-31G?? basis set for various conformations. a detailed assignment of most of the observed bands has been proposed on the basis of the infrared dichroism, Raman polarization data and frequency calculations.  相似文献   

13.
Fourier transform (FT)‐Raman and Fourier transform infrared (FT‐IR) spectra of 3‐{[(4‐fluorophenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using the B3LYP/6‐31G* basis and compared with the experimental data. The prepared compound was identified by NMR and mass spectra. The simultaneous IR and Raman activation of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability and infrared intensities are reported. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
3,5‐Pyrazoledicarboxylic acid was used as a ligand for the synthesis of its Ce(III) and Nd(III) complexes. The complexes of Ce(III) and Nd(III) with 3,5‐pyrazoledicarboxylic acid were synthesized and their compositions were determined by elemental analysis. Vibrational study in the solid state of 3,5‐pyrazoledicarboxylic acid and its new Ce(III) and Nd(III) complexes was performed by IR and Raman spectroscopy. The changes observed between the IR and Raman spectra of the ligand and of the complexes allowed us to establish the coordination mode of the metal in both complexes. The comparative vibrational analysis of the free ligand and its lanthanide(III) complexes gave evidence that 3,5‐pyrazoledicarboxylic acid binds Ln(III) through the deprotonated carboxylic oxygens. The density functional theory (DFT) calculated geometries, harmonic vibrational modes and Raman scattering activities of the ligand were in good agreement with the experimental data, and a complete vibrational assignment is being proposed. The experimental IR and Raman bands of the ligand were assigned to normal modes on the basis of DFT calculations. The effect of the intramolecular hydrogen bonds in the ligand on vibrational mode positions is also discussed. The characteristic IR and Raman bands of 3,5‐pyrazoledicarboxylic acid and its lanthanide complexes were specified and discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The conformational behavior and structural stability of 2‐fluoro‐6‐nitrotoluene (FNT) were investigated by utilizing density functional theory (DFT) with the standard B3LYP/6‐311 + G** method and basis set combinations. The vibrational wavenumbers of FNT were computed at DFT levels and complete vibrational assignments were made on the basis of normal coordinate calculations. Normal coordinate analysis (NCA) has been carried out to support the vibrational analysis. The results were compared with the experimental values. The observed Fourier transform infrared (FTIR) and Fourier transform (FT) Raman vibrational wavenumbers were analyzed and compared with the theoretically predicted vibrational spectra. The results of vibrational spectra of FNT were also compared with the vibrational spectra of some toluene derivatives. The assignments of bands to various normal modes of the molecules were also carried out. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
FT‐IR and FT‐Raman spectra of benzoic acid (BA) and 3,5‐dichloro salicylic acid (SA) have been recorded in the regions of 4000–400 and 4000–50 cm−1 respectively. The spectra were interpreted with the aid of normal coordinate analysis following the full structure optimizations and force field calculations based on density functional theory (DFT) using standard B3LYP6‐31G** method and basis set combinations. The DFT force field transformed to natural internal coordinates was corrected by a well‐established set of scale factors that were found to be transferable to the title compounds. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Cinchona alkaloids are well‐known antimalarial compounds also used in asymmetric synthesis in organic chemistry. In this work, vibrational spectra of quinine, quinidine, cinchonine, and cinchonidine were acquired and interpreted on the basis of theoretical calculations. Normal Raman spectra of the alkaloids in solution exhibit similar patterns and cannot be used for differentiation between the derivatives (e.g. quinine and cinchonidine) and corresponding pseudoenantiomers (e.g. quinine and quinidine). Thus, Raman Optical Activity (ROA) method was applied to show distinct differences related to the configuration of chiral atoms. ROA allowed unequivocal identification of the pseudoenantiomers based on the sign of the characteristic bands from a single measurement. The experiments were supported by the theoretical approach including conformational study followed by wavenumber calculations and Potential Energy Distribution (PED) analysis. For quinine, vibrational spectroscopy was additionally used to show its structural changes in aqueous solutions at various pH and its distribution in a pharmaceutical product. Spatial distribution of quinine in a drug was observed by the FT‐Raman mapping technique. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

For the first time, the differences between the spectra of amphetamine and amphetamine-H+ and between different conformers are thoroughly studied by ab initio model calculations, and Raman and surface-enhanced Raman spectroscopy (SERS) spectra are measured for different species of amphetamine. The spectra of amphetamine and amphetamine-H+ samples were obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization of the conformational energy of the S-plus-amphetamine molecule and the S-plus-amphetamine-H+ ion. The harmonic frequency calculations provide information about the characteristic features of the Raman spectra and the nature of the bonding in the molecule. It is concluded that vibrational bands from salt anions with internal bonds (sulfates, hydrogen phosphates, etc.) need to be taken into account when employing these spectra for identification purposes. These results also show how Raman spectroscopy can assist the forensic community in drug profiling studies. Furthermore, because their spectra are different, discrimination between the free and protonated forms of amphetamine salts can be observed. Here, we provide evidence for this difference and show experimentally how it has been overseen.  相似文献   

19.
The Fourier Transform Infrared and Raman spectra of the L-Alaninium oxalate (LAO) have been recorded and analyzed. The fundamental vibrational wave numbers intensities of vibrational bands and optimized geometrical parameters of the compound were evaluated using DFT (B3LYP) method with 6-31+G(d,p) basis set. Natural Bond Orbital (NBO) and Natural Population Analysis (NPA) analysis for the LAO compound was carried out. Mulliken population analyses on atomic charges were also calculated.  相似文献   

20.
In this study, experimental and theoretical vibrational spectral results of the molecular structures of 6,8‐dichloroflavone (6,8‐dcf) and 6,8‐dibromoflavone (6,8‐dbf) are presented. The FT‐IR and FT‐Raman spectra of the compounds have been recorded together between 4000 and 400 cm−1 and 3500–5 cm−1 regions, respectively. The molecular geometry and vibrational wavenumbers of 6,8‐dcf and 6,8‐dbf in their ground state have been calculated by using DFT/B3LYP functional, with 6‐31 + + G(d,p) basis set used in calculations. All calculations were performed with Gaussian03 software. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. Scale factors have been used in order to compare how the calculated and experimental data are in agreement. Theoretical infrared intensities are also reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号