首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《光谱学快报》2013,46(5-6):429-440
Four new metal complexes of Cu(II), Ni(II), Zn(II) and Co(III) with Schiff base derived from 4‐methoxybenzaldehyde and 1,2‐bis(p‐aminophenoxy)ethane have been prepared and characterized by magnetic susceptibility, conductance measurements, elemental analyses, UV–Vis, 1H NMR and IR spectra studies. The magnetic and spectroscopic data indicate an octahedral geometry for the six‐coordinate complexes. The ligand was used for complexation studies. Stability constants were measured by means of a conductometric method. Furthermore, the stability constants for complexation between ZnCl2, Cu(NO3)2 and AgNO3 salts and ligand (L) in 80% dioxane–water and pure methanol were determined from conductance measurements. In 80% dioxane–water, he stability constants (log Ke) increase inversely with the crystal radii in the order Ag(I) < Zn(II) < Cu(II).  相似文献   

2.
《光谱学快报》2013,46(2):219-228
ABSTRACT

Cu(II), Ni(II), Co(III) and Zn(II) complexes with Schiff base have been prepared. Ligand is derived from condensation of 1,2-bis(p>-aminophenoxy)ethane and 2- hydroxynaphthalin-1-carbaldehyde. The complexes have been characterized by elemental analyses, ΛM, IR, UV-VIS, 1H NMR, 13C NMR and magnetic measurements. The ligand is coordinated to the central metal as a tetradentade ONNO ligand. The four bonding sites are the azomethine nitrogen and aldehydic -OH groups.  相似文献   

3.
The Schiff base, H2L, was derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) and diethenetriamine. The crystal structure of [NiL(C2H5OH)]·H2O obtained from ethanol solution was determined by X-ray diffraction analysis. The coordination geometry of Ni(II) ion is a distorted octahedron with three oxygen atoms and three nitrogen atoms. Under the excitation of ultraviolet light, strong fluorescence of solid Zn(II) complex was observed. In addition, the fluorescence enhancement was obtained in the presence of Zn2+ in THF solution of the ligand, indicating that H2L may be a potential fluorescent sensor for Zn2+.  相似文献   

4.
The coordination geometry of Cu(II) complexes with water and ammonia has been studied by four pulse electron spin echo modulation spectroscopy in siliceous (L)Cu-MCM-41 and in aluminum-containing (L)Cu-AlMCM-41 where (L) denotes Cu(II) incorporation by liquid phase ionexchange. An analysis of the proton sum peaks in the echo modulation pattern of the water and ammonia ligands reveals significant differences in the Cu(II) coordination between MCM-41 and AlMCM-41. In the aluminum-containing material (L)Cu-AlMCM-41, Cu(II) coordinates to two molecules of water or ammonia and three framework oxygens in a square-based pyramidal coordination geometry. The base of the pyramid is formed by two adsorbate molecules together with two framework oxygens. A third framework oxygen is located at the apex of the pyramid. The cupric ion site is slightly shifted from the plane of the pyramid base towards the apex resulting in an off-plane position. In the siliceous material (L)Cu-MCM-41, [Cu(H2O)6]2+ and [Cu(NH3)4]2+ complexes are observed. The results of four pulse electron spin echo modulation experiments support a distorted octahedral coordination geometry for the [Cu(H2O)6]2+ complex in (L)Cu-MCM-41.  相似文献   

5.
New ligand 4‐((2‐Hydroxy1‐naphthyl) methylene amino)‐1.5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one (HL) was synthesized from the reaction of 2‐hydroxy‐1‐naphthaldehyde and 4‐aminophenaz one. A complexes of this ligand [VO(II)(HL)(SO4)], [Pt(IV)(L)Cl3], [Re(V)(L)Cl3]Cl, and [M(II)(L)Cl] (M═Pd(II), Ni(II), Cu(II)) were synthesized. The resulted compounds were characterized by IR, NMR (1H and 13C), mass spectrometry, element analysis, and UV‐Vis spectroscopy. Additionally, the spectroscopic studies revealed octahedral geometries for the Re(V), Pt(IV) complexes, and square pyramidal for VO(II), square planar for Pd(II) complex, and tetrahedral for the Ni(II) and Cu(II) complexes. Thermodynamic parameters (ΔE*, ΔH*, ΔS*, ΔG*, and K) were calculated using from the TGA curve Coats‐Red fern method. Therefore, hyper Chem‐8 program has been used to predict structural geometries of compounds in the gas phase. Finally, the synthesized Schiff base and its metal complexes were screened for their biological activity against bacterial species, 2 Gram‐positive bacteria (Bacillus subtilis and Staphylococcus aureus) and 2 Gram‐negative bacteria (Escherichia coli and Pseudomonas aeruginosa).  相似文献   

6.
In this study, we attempted to clarify the coordination state and the distribution of copper (II) ions in the CuThO compounds prepared by coprecipitation, by using several physico-chemical techniques in particular, X-Ray Photoelectron Spectroscopy (XPS).

For atomic ratios Cu/Th ≤ 0.25, the copper (II) species are mainly located near the thoria surface. The Cu2p3/2 level shows a chemical shift towards the lower binding energy compared to Cu2+ ions in CuO and also a net decrease in the intensity of the satellite peak, characteristic of copper (11). A relation between these observations and the covalent character o f Cuzt- 02- bond i s esta- blished. Eightfold coordination of copper (11) i n the thoria lattice i s evident. These conclusions are in good agreement with Electron Spin Resonance (ESR) results.

For a higher atomic ratio (Cu/Th > 0.25), a formation o f copper oxide crystallites i s observed on the thoria surface.  相似文献   

7.
A series of transition metal complexes of Co(II), Ni(II), Zn(II), Fe(III) and VO(IV) have been synthesized involving the Schiff base, 2,3-dimethyl-1-phenyl-4-(2-hydroxy-3-methoxy benzylideneamino)-pyrazol-5-one(L), obtained by condensation of 4-aminoantipyrine with 3-methoxy salicylaldehyde. Structural features were obtained from their FT-IR, UV–vis, NMR, ESI Mass, elemental analysis, magnetic moments, molar conductivity and thermal analysis studies. The Schiff base acts as a monovalent bidentate ligand, coordinating through the azomethine nitrogen and phenolic oxygen atom. Based on elemental and spectral studies six coordinated geometry is assigned to Co(II), Ni(II), Fe(III) and VO(IV) complexes and four coordinated geometry is assigned to Zn(II) complex. The interaction of metal complexes with Calf thymus DNA were carried out by UV–VIS titrations, fluorescence spectroscopy and viscosity measurements. The binding constants (Kb) of the complexes were determined as 5?×?105 M?1 for Co(II) complex, 1.33?×?104 M?1 for Ni(II) complex, 3.33?×?105 M?1 for Zn(II) complex, 1.25?×?105 M?1 for Fe(III) complex and 8?×?105 M?1 for VO(IV) complex. Quenching studies of the complexes indicate that these complexes strongly bind to DNA. Viscosity measurements indicate the binding mode of complexes with CT DNA by intercalation through groove. The ligand and it’s metal complexes were screened for their antimicrobial activity against bacteria. The results showed the metal complexes to be biologically active, while the ligand to be inactive.  相似文献   

8.
The present study reports the synthesis of Co(II), Ni(II), Mn(II), Cu(II), and Zn(II) complexes with a new macrocyclic ligand (L2)- 1,2,8,9,11,14-hexaazacyclopentadeca-12,13-dioxo-10,15-dithione-2,7-diene. The macrocycle was derived from thiosemicabazone (L1) and diethyloxalate that were prepared by the reaction of thiosemicarbazide and glutaraldehyde in the ratio of 2:1. The synthesized complexes and ligands were characterized by elemental analysis and molar conductance, magnetic susceptibility, 1HNMR, IR, electronic, and thermogravimetric analyses. The molar conductance values confirmed that the Ni(II), Cu(II), Zn(II), Mn(II) and Co(II) complexes were 1:2 electrolytes. On the basis of electronic spectral studies and molar conductance measurements, the authors proposed an octahedral structure for Ni(II), Mn(II), and Co(II) complexes, tetrahedral geometry for Zn(II) complex, and square planar geometry for Cu(II) complex. The thermal behavior of the compounds was studied by TGA in a nitrogen atmosphere up to 750°C at the rate of 20°C/min. The TGA results revealed that the complexes had higher thermal stability than the macrocycle. All the synthesized compounds were screened against 4 bacteria (i.e., Streptococcus aureus, Escherichia coli, Bacillus subtillis, Salmonella typhimurium) and 2 fungi (i.e., Fusarium oryzae, Candida albicans). The results showed that the metal complexes inhibited the growth of bacteria to a greater extent as compared to the ligand.  相似文献   

9.
Free radical concentration and theirg-values in humic acids (HA) isolated from various sources were studied by quantitative EPR technique. EPR data for HA formed during composting and natural humification processes occurring in soil, peat and brown coal are given. In more detail the EPR data were analyzed for brown coal HA under carbonization, air oxidation (150°C) as well as metal uptake (Ca(II), Zn(II), Cd(II), Hg(II), Co(II), Ni(II) and Cu(II)) and NO2 reaction. Two groups of metal complexes were distinguished on the basis of their interaction with free radicals in HA. Ca(II), Zn(II), Cd(II) and Hg(II) ions increase free radical concentration, while Co(II), Ni(II) and Cu(II) ions quench the radicals compared to the raw HA. This phenomenon can be explained either by the strong interaction of the metal ions with active centres responsible for the quinone-hydroquinone-semiquinone equilibria, and/or by the antiferromagnetic interaction between radical spins and metal d orbitals. Gaseous ammonia was found to be a very useful base easily penetrating the solid matrix of HA and strongly influencing the equilibria. β-Diketone groups present in HA react with NO2 yielding iminoxy radicals. In the HA-metal complexes these structural units are engaged in metal coordination which lowers effectiveness of the iminoxyl synthesis.  相似文献   

10.
In this study, we prepared two Schiff base ligands N-(4-hydroxy phenyl)-2,4-di-methoxy benzaldimine (TS1) and N-(4-hydroxy phenyl)-2,5-di-methoxybenzaldimine (TS2) which were characterized by structural, spectroscopic and analytical methods. The ligands TS1 and TS2 were obtained as single crystals from ethanol solution. X-ray diffraction data for two compounds showed that the bond lengths are within the normal ranges. The electrochemical properties of the Schiff base ligands were studied in different solvents and at various scan rates. The luminescence properties of the ligands TS1 and TS2 in different solvents and at different pH values have been investigated. The results show that the ligands exhibit more efficient luminescence properties in CH3CN and n-butanol.  相似文献   

11.
Evidence for polynuclear octahedral coordination in the complexes [MT2]n (M = Ni, Zn; T = tropolonate anion; n > 1) is adduced by observing the effect of base adduct formation on their infrared spectra. The spectra of the complexes [M(ST)2] (M = Co, Ni, Cu, Zn; ST = 2-thiotroponate anion) are discussed in relation to their known or probable structures.  相似文献   

12.
The DNA binding and photocleavage specificities of the Zn(II), Cu(II), Co(III), Mn(III) complexes of 5,10,15-tris(1-methylpyridinium-4-yl)-20-(4-propionoxyphenyl)porphyrin have been studied by using a combination of absorption, fluorescence titration, surface-enhanced Raman spectroscopy (SERS), induced circular dichroism (ICD) spectroscopy, thermal DNA denaturation as well as gel electrophoresis experiment. It is found that Cu(II) porphyrin has comparable binding ability with the free base porphyrin while the axial-coordinated Zn(II), Co(III), and Mn(III) porphyrins have lower Kb because of the molecular steric hindrance. However, those metalloporphyrins with lower Kb have similar DNA cleavage efficiencies with the free base porphyrin. This could be best understood by the enhancement of the 1O2 productivity which may also result from the steric hindrance of the axial-coordinated metalloporphyrins.  相似文献   

13.
A series of pentadentate ligands N–X–5LH2 (X?=?H, Methyl, Benzyl)?=?N–X–saldptn (4-X-N,N′-bis(1-hydroxy-2-benzylidene)-1,7-diamino-4-azaheptane) has been prepared by a Schiff base condensation between 1,7-diamino-4-X-azaheptane and salicylaldehyde. Complexation with Fe(III) yields a series of high-spin (S?=?5/2) complexes of [FeIII(N–X–5L)Cl]. Such precursors were combined with [Mo(CN)8]4? and a series of blue nonanuclear cluster compounds [MoIV{(CN)FeIII(N–X–5L)}8]Cl4 resulted. Such star-shaped nonanuclear compounds are high-spin systems at room temperature. On cooling to 10 K some of the iron(III) centers switched to the low-spin state as proven by Mössbauer spectra, i.e. multiple electronic transitions. Parts of the compounds perform a high-spin to high-spin transition. Under light irradiation the populations are altered slightly.  相似文献   

14.

A series of amino acid-based Schiff bases have been synthesized using a facile condensation between benzil (a diketone) and amino acid in the presence of a base. The formation of Schiff base compounds has been ensured by elemental analysis, FT-IR, 1H-NMR, 13C-NMR and UV–Vis. spectra. Density Functional Theory (DFT) calculations have been explored in order to get intuition into the molecular structure and chemical reactivity of the compounds. The DFT, optimized structure of the compounds, has been used to attain the molecular docking studies with DNA structure to find the favorable mode of interaction. In silico ADME/Tox profile of the compounds has been predicted using pkCSM web tools, exhibiting suitable values of absorption, distribution, and metabolism. These obtained parameters are connected to bioavailability. In addition, toxicity, skin sensitization and cardiotoxicity (hERG) analysis have been performed for evaluating the drug-like character of the prepared Schiff bases. The findings obtained from this study may find applications in the field focusing on the production of efficient and harmless pharmacological drugs.

Graphical abstract
  相似文献   

15.
Planar Pd(LH)2 complexes (LH2 = H2N C S C S N H2, CH3HNCSCSNHCH3) form mixed polymeric complexes with Ni(II), Cu(II), Zn(II) and Cd(II) in alcalic media, where the planar Pd(LH)2 complexes act as tetradentates with N-coordination. The electronic spectra and thermal behaviour are discussed, a thorough investigation of the i.r. spectra is presented and special attention has been given to the H/D, CH3/CD3 and 58Ni/62Ni, 63Cu/65Cu and 64Zn/68Zn isotopic shifts.  相似文献   

16.
Some new transition metal complexes of the Schiff base ligand (FPTH) formed by condensation of fluorenone with 4-phenylthiosemicarbazide were prepared. Isolation of the solid metal (II) complexes depends on the metal salt used, pH and the reaction conditions. Characterization of these complexes has been made by elemental analyses, molar conductivities, NMR (1H, 13C), magnetic susceptibility, vissible studies and IR spectra. From EPR studies; symmetry and bonding character for paramagnetic copper(II) complex were determined. The polarographic and cyclic voltammetric curves of the Schiff base (FPTH) were recorded in Britton-Robinson buffer series of pH 3–10. The DC polarograms and the cyclic voltammograms exhibited a single 4-electron irreversible diffusion-controled reduction step represented the saturation of C=N and C=S electroactive centers. The corrosion inhibition of aluminium in HCl using FPTH is studied. The antimicrobial activity of ligand and its metal complexes has also been demonstrated.  相似文献   

17.
采用X射线吸收精细结构分析(XAFS)方法分析Cu(His)2复合物的配位模式,通过测定不同pH值下的铜的K边XAFS吸收谱,研究Cu(His)2第一配位壳层的结构.为了更准确地验证Cu(His)2配位结构,对组氨酸的羧基和咪唑分别进行了化学修饰.研究结果明确了在不同pH环境下组氨酸的羧基、氨基和咪唑的配位情况.对于争议最大的在生理pH值下组氨酸的配位方式,其结果更支持六配位模式,同时可能有少量的五配位模式配合物平衡存在.  相似文献   

18.
Co(II), Ni(II), Cu(II), Cd(II), and Fe(II) complexes with Schiff base derived from 2-amino-5-(2-amino-1,3,4-thiadiazolyl)-1,3,4-thiadiazole (1) and salicylaldehyde have been prepared. The ligand and its complexes have been characterized by IR, 1H NMR spectra, elemental analyses, magnetic susceptibility, UV-Vis. and thermogravimetry–differential thermal analysis (TGA-DTA). The analytical data show 1:2 metal-to-ligand ratio for Co(II), Ni(II), Cd(II), and Fe(II) and 2:2 metal-to-ligand ratio for Cu(II) complexes. The suggested structures for the N-[5′-Amino-2,2′-bis(1,3,4-thiadiazole)-5-yl]-2-hydroxybenzaldehyde Imine (HL) complexes of Fe(II), Co(II), and Cd(II) are octahedral, for the Ni(II) complex is tetrahedral, and for the Cu(II) complex is square-planar  相似文献   

19.
One series of Cu-Zn and two series of Cu-Zn-Al hydroxycarbonate precursors with varying metal molar ratios were prepared via co-precipitation or multi-precipitation method, and the mixed metal oxides obtained by calcination of the precursor materials were used as adsorbents for H2S removal in the range of 25-100 °C. The results of H2S adsorption tests showed that these mixed oxides, especially two series of Cu-Zn-Al mixed metal oxides exhibited markedly high breakthrough sulfur capacities (ranging from 4.4 to 25.7 g S/100 g-sorbent with increase of Cu/Zn molar ratio) at 40 °C. Incorporation Cu and/or Al decreased the mean crystalline sizes of ZnO and CuO species in the Cu-Zn and Cu-Zn-Al mixed metal oxide adsorbents by decreasing of mean crystalline sizes of hydroxycarbanate phases mainly including hydrozincite, aurichalcite and malachite, segregation of Al phase, etc. Higher breakthrough sulfur capacity of each adsorbent in two ternary series than that of the corresponding adsorbent in binary series should be ascribed to the enhancement of the dispersion of ZnO and/or CuO species with incorporation of aluminum, thereby increasing the overall rate of reaction between the adsorbent and H2S by reducing the thickness of potential sulfide shell on the outer layer of the oxide crystalline grains and increasing the area of the interface for the exchange of HS/S2− and O2−. For each series of adsorbents, the breakthrough sulfur capacity increased with the increase of Cu/Zn molar ratio regardless of changes of the dispersion of CuO and/or ZnO. This phenomenon might be mainly attributed to faster rate of the lattice diffusion of HS, S2− and O2− or exchange of HS/S2− and O2− during the sulfidation of CuO than that during the sulfidation of ZnO due to less rearrangement of the anion lattice.  相似文献   

20.
We present detailed data and analysis of the effects of Zn substitution on the planar Cu site in YBa2Cu3O6+x (YBCO6+x) as evidenced from our 89Y NMR measurements on oriented powders. For x << 1x \ll 1 we find additional NMR lines which are associated with the Zn substitution. From our data on the intensities and temperature dependence of the shift, width, and spin-lattice relaxation rate of these resonances, we conclude that the spinless Zn 3d 10 state induces local moments on the near-neighbour (nn) Cu atoms. Additionally, we conjecture that the local moments actually extend to the farther Cu atoms with the magnetization alternating in sign at subsequent nn sites. We show that this analysis is compatible with ESR data taken on dilute Gd doped (on the Y site) and on neutron scattering data reported recently on Zn substituted YBCO6 + x. For optimally doped compounds 89Y nn resonances are not detected, but a large T-dependent contribution to the 89Y NMR linewidth is evidenced and is also attributed to the occurence of a weak induced local moment near the Zn. These results are compatible with macroscopic magnetic measurements performed on YBCO6 + x samples prepared specifically in order to minimize the content of impurity phases. We find significant differences between the present results on the underdoped YBCO6 + x samples and 27Al NMR data taken on Al3+ substituted on the Cu site in optimally doped La2CuO4. Further experimental work is needed to clarify the detailed evolution of the impurity induced magnetism with hole content in the cuprates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号