首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
An earlier dislocation model for predicting the grain size effect on deformation twinning in nanocrystalline (nc) face-centred-cubic (fcc) metals has been found valid for pure metals but problematic for alloys. The problem arises from the assumption that the stacking-fault energy (γSF) is twice the coherent twin-boundary energy (γfcc), which is approximately correct for pure fcc metals, but not for alloys. Here we developed a modified dislocation model to explain the deformation twinning nucleation in fcc alloy systems, where γSF ≠ 2γtwin. This model can explain the differences in the formations of deformation twins in pure metals and alloys, which is significant in low stacking-fault energy alloys. We also describe the procedure to calculate the optimum grain size for twinning in alloy systems and present a method to estimate γtwin.  相似文献   

2.
The specific features of the mechanodynamic penetration of helium under plastic deformation into fcc (Cu) and bcc (Fe, Nb) metals with different initial defect structures (single-crystal, nanocrystalline, and porous samples) are investigated. The intensity of mechanodynamic penetration into these metals is shown to depend on the type of bonding (metallic or covalent), which determines the degree of localization of the plastic flow of these metals, as well as on the type of defect structure and on the character of plastic flow (dislocation deformation, twinning, grain-boundary sliding). Curves of helium extraction from samples at different strains are obtained. It is found that the helium release exhibits a wide variety of peaks depending on the degree and character of plastic deformation of the metals under investigation. This suggests that the metals contain different types of helium traps, which determine the content of helium and the specific features of its release in the temperature range studied.  相似文献   

3.
Grain-size dependency of deformation twinning has been previously reported in nanocrystalline face-centred-cubic metals, which results in an optimum grain-size range for twin formation. Here, we report, for the first time in experiments, the observed optimum grain sizes for deformation twins in nanocrystalline Cu–Zn alloys which slightly increase with increasing Zn content. This result agrees with the reported trend but is much weaker than predicted by stacking-fault-energy based models. Our results indicate that alloying changes the relationship between the stacking-fault and twin-fault energy and therefore affects the optimum grain size for deformation twinning. These observations should be also applicable to other alloy systems.  相似文献   

4.
We have observed a new deformation-twinning mechanism using the high resolution transmission electron microscope in polycrystalline Ag films, zero-strain twinning via nucleation, and the migration of a Σ3{112} incoherent twin boundary (ITB). This twinning mechanism produces a near zero macroscopic strain because the net Burgers vectors either equal zero or are equivalent to a Shockley partial dislocation. This observation provides new insight into the understanding of deformation twinning and confirms a previous hypothesis: detwinning could be accomplished via the nucleation and migration of Σ3{112} ITBs. The zero-strain twinning mechanism may be unique to low staking fault energy metals with implications for their deformation behavior.  相似文献   

5.
A theoretical model is proposed that describes the generation of deformation twins near brittle cracks of mixed I and II modes in nanocrystalline metals and ceramics. In the framework of the model, a deformation twin nucleates through stress-driven emission of twinning dislocations from a grain boundary distant from the crack tip. The emission is driven by both the external stress concentrated by the pre-existent crack and the stress field of a neighbouring extrinsic grain boundary dislocation. The ranges of the key parameters, the external shear stress, τ, and the crack length, L, are calculated within which the deformation-twin formation near pre-existent cracks is energetically favourable in a typical nanocrystalline metal (Al) and ceramic (3C-SiC). The results of the proposed model account for experimental data on observation of deformation twins in nanocrystalline materials reported in the literature. The deformation-twin formation is treated as a toughening mechanism effectively operating in nanocrystalline metals and ceramics.  相似文献   

6.
C. X. Huang  G. Yang  B. Deng  S. D. Wu  S. X. Li 《哲学杂志》2013,93(31):4949-4971
An ultra-low carbon austenitic stainless steel was successfully pressed from one to eight passes by equal channel angular pressing (ECAP) at room temperature. By using X-ray diffraction, optical microscopy and transmission electron microscopy, the microstructural evolution during ECAP was investigated to reveal the formation mechanism of strain-induced nanostructures. The refinement mechanism involved the formation of shear bands and deformation twins, followed by the fragmentation of twin lamellae, as well as successive martensite transformation from parent austenitic grains with sizes ranging from microns to nanometres through the processes γ(fcc)?→?ε(hcp)?→?α′(bcc). After pressing for eight passes, two types of nanocrystalline grains were achieved: (a) nanocrystalline austenite with a mean grain size of ~31?nm and (b) strain-induced nanocrystalline α′-martensite with a size of ~74?nm. The formation mechanisms are discussed in terms of microstructural subdivision via deformation twinning and martensite transformation.  相似文献   

7.
W. Liang 《哲学杂志》2013,93(14-15):2191-2220
Novel shape memory behaviour was discovered recently in single-crystalline fcc nanowires of Cu, Ni and Au with lateral dimensions below 5?nm. Under proper thermomechanical conditions, these wires can recover elongations up to 50%. This phenomenon only exists at the nanoscale and is associated with reversible lattice reorientations within the fcc lattice structure driven by surface stresses. Whereas the propagation of partial dislocations and twin planes specific to fcc metals are the required mechanism, only materials with higher propensities for twinning (e.g. Cu and Ni) show this behaviour and those with lower propensities for twinning (e.g. Al) do not. This paper provides an overview of this novel behaviour with a focus on the transformation mechanism, driving force, reversible strain, size and temperature effects and energy dissipation. A mechanism-based micromechanical continuum model for the tensile behaviour is developed. This model uses a decomposition of the lattice reorientation process into a reversible, smooth transition between a series of phase-equilibrium states and a superimposed irreversible, dissipative propagation of a twin boundary. The reversible part is associated with strain energy functions with multiple local minima and quantifies the energy conversion process between the twinning phases. The irreversible part is due to the ruggedness of the strain energy landscape, associated with dislocation nucleation, gliding and annihilation, and characterizes the dissipation during the transformation. This model captures all major characteristics of the behaviour, quantifies the size and temperature effects and yields results which are in excellent agreement with data from molecular dynamics simulations.  相似文献   

8.
徐振海  袁林  单德彬  郭斌 《物理学报》2009,58(7):4835-4839
采用分子静力学方法模拟了〈100〉单晶铜纳米线的拉伸变形过程,研究了纳米线屈服的机理. 结果表明:1) 纳米线初始屈服通过部分位错随机激活的{111}〈112〉孪生实现,后继屈服通过{111}〈112〉部分位错滑移实现;2) 纳米线变形初期不同滑移面上的部分位错在两面交线处相遇形成压杆位错,变形后期部分位错在刚性边界处塞积,两者都阻碍位错滑移,引起一定的强化作用. 关键词: 纳米线 屈服 位错 分子静力学  相似文献   

9.
Ruizhi Li 《哲学杂志》2015,95(25):2747-2763
Stacking fault tetrahedra (SFTs) are volume defects that typically form by the clustering of vacancies in face-centred cubic (FCC) metals. Here, we report a dislocation-based mechanism of SFT formation initiated from the semi-coherent interfaces of Cu–Al nanoscale multilayered metals subjected to out-of-plane tension. Our molecular dynamics simulations show that Shockley partials are first emitted into the Cu interlayers from the dissociated misfit dislocations along the Cu–Al interface and interact to form SFTs above the triangular intrinsic stacking faults along the interface. Under further deformation, Shockley partials are also emitted into the Al interlayers and interact to form SFTs above the triangular FCC planes along the interface. The resulting dislocation structure comprises closed SFTs within the Cu interlayers which are tied across the Cu–Al interfaces to open-ended SFTs within the Al interlayers. This unique plastic deformation mechanism results in considerable strain hardening of the Cu–Al nanolayered metal, which achieves its highest tensile strength at a critical interlayer thickness of ~4 nm corresponding to the highest possible density of complete SFTs within the nanolayer structure.  相似文献   

10.
J. Wang  N. Li  A. Misra 《哲学杂志》2013,93(4):315-327
Σ3 grain boundaries form as a result of either growth twinning or deformation twinning in face centered cubic (fcc) metals and play a crucial role in determining the mechanical and electrical properties and microstructural stability. We studied the structure and stability of Σ3 grain boundaries (GBs) in fcc metals by using topological analysis and atomistic simulations. Atomistic simulations were performed for Cu and Al with empirical interatomic potentials to reveal the influence of stacking fault energy on the morphology of the twinned grains. Three sets of tilt Σ3 GBs were studied with respect to the tilt axis parallel to ?111?, ?112?, and ?110?, respectively. We showed that Σ3{111} and Σ3{112} GBs are thermodynamically stable and the others will dissociate into terraced interfaces regardless of the stacking fault energy. The morphology of the nano-twinned grains in Cu is predicted from the above analysis and found to match with experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号