首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
E. Waxman 《Pramana》2004,62(2):483-495
The existence of cosmic rays of energies exceeding 1020 eV is one of the mysteries of high-energy astrophysics. The spectrum and the high energy to which it extends rule out almost all suggested source models. The challenges posed by observations to models for the origin of high-energy cosmic rays are reviewed, and the implications of recent new experimental results are discussed. Large area high-energy cosmic ray detectors and large volume high-energy neutrino detectors currently under construction may resolve the high-energy cosmic ray puzzle, and shed light on the identity and physics of the most powerful accelerators in the Universe.  相似文献   

3.
Deep underwater high energy neutrino detection is a very promising field in both elementary particle physics and astrophysics. On one side, the energy range of ground based accelerators cannot be extended much more respect to the present, leaving only astronomical sources for future investigations. In the astrophysics field, neutrinos are the tool to explore further in the universe due to their low interactions. By the same token, the experimental problems for a neutrino detector are enormous. The Cherenkov effect is practically the only possible tool, because it uses sea water both as shield and as detector. NESTOR is the first step toward a full fledged deep underwater neutrino experiment. While its area, of the order of 10000 m**2, cannot hope to identify all possible celestial sources, it is nevertheless a necessary step toward the “Km**3” experiment. The first deployment tests have already been performed, proving the feasibility of the mechanical design, and the electronics is almost completely ready. Additional tests are scheduled for this autumn and next year will see a relevant part of the experiment installed at the bottom of the Ionian sea.  相似文献   

4.
This review is devoted to the problems of recording ultrahigh-energy neutrinos produced in distant astrophysical sources and during the decay of supermassive particles. Prospects for the detection of neutrino fluxes are considered based on peculiarities of the propagation and interaction of ultrahigh-energy neutrinos. The operating and planned facilities designed to investigate neutrinos from various sources are described: neutrino telescopes recording neutrino interactions in natural water and ice volumes; ground-based arrays of detectors and optical telescopes onboard orbital space stations capable of detecting neutrino-triggered horizontal air showers. Instruments based on new principles of recording neutrinos with extremely high energies are considered: radio telescopes designed to observe Cherenkov radio emission from neutrino cascades originating in such radio-transparent natural environments as the atmosphere, salt domes, ice packs, and lunar regolith; underwater acoustic detectors. It is shown that putting new facilities into operation will allow neutrinos from most of the known astrophysical sources with energies differing by more than ten orders of magnitude, from 1012 to 1022–1024 eV, to be recorded.  相似文献   

5.
We propose a new solution to the origin of dark energy. We suggest that it was created dynamically from the condensate of a singlet neutrino at a late epoch of the early Universe through its effective self-interaction. This singlet neutrino is also the Dirac partner of one of the three observed neutrinos, hence dark energy is related to neutrino mass. The onset of this condensate formation in the early Universe is also related to matter density and offers an explanation of the coincidence problem of why dark energy (70%) and total matter (30%) are comparable at the present time. We demonstrate this idea in a model of neutrino mass with (right-handed) singlet neutrinos and a singlet scalar.  相似文献   

6.
Summary The problem of the missing matter in the Universe is reviewed and discussed in terms of massive neutrinos. The primordial abundances of light elements produced during the big bang nucleosynthesis can be used to determine firm bounds on the number of neutrino flavours and on the ratio of baryon to photon densities in the Universe. These limits imply that nonbaryonic matter is the dominant constituent of large-scale cosmic structures, being massive neutrinos the best guess for such a matter. In order that the Universe be closed, a value of the neutrino rest mass is derived, which agrees with the bounds obtained from the dynamics of galaxies and clusters of galaxies. It is also shown that density perturbations can hardly grow in a nucleon-dominated Universe, and massive neutrinos may be the seed for nucleon condensations. All these astrophysical and cosmological considerations suggest a lower and an upper bound of the neutrino rest mass. Paper presented at the Congress ?Galactic and Extragalactic Dark Matter?, Roma, 28 to 30 June 1983.  相似文献   

7.
The neutrino asymmetry, \({n_v} - {n_{\bar v}}\), in the plasma of the early Universe generated both before and after the electroweak phase transition (EWPT) is calculated. It is well known that in the Standard Model the leptogenesis before the EWPT, in particular, for neutrinos, owes to the Abelian anomaly in a massless hypercharge field. At the same time, the generation of neutrino asymmetry in the Higgs phase after the EWPT has not been considered previously due to the absence of any quantum anomaly in an external electromagnetic field for such electroneutral particles as neutrinos, in contrast to the Adler anomaly for charged left- and right-handed massless electrons in the same electromagnetic field. Using the Boltzmann equation for neutrinos modified to include the Berry curvature term in momentum space, we establish a violation of the macroscopic neutrino current in the plasma after the EWPT and exactly reproduce the non-conservation of the lepton current in the symmetric phase before the EWPT that owes to the contribution of the triangle anomaly in an external hypercharge field but already without computing the corresponding Feynman diagrams. We apply the new kinetic equation to calculate the neutrino asymmetry by taking into account the Berry curvature and the electroweak interaction with plasma particles in the Higgs phase, including that after the neutrino decoupling in the absence of their collisions in the plasma. We find that this asymmetry is too small for observations. Thus, a difference between the relic neutrino and antineutrino densities, if it exists, must appear already in the symmetric phase of the early Universe before the EWPT.  相似文献   

8.
This paper discusses the search for neutrino oscillations as a probe for the possibility of small neutrino masses. None of the experiments provides definitive evidence for neutrino mass, but there is a strong indication of a mass from the study of neutrinos from the Sun. If non-zero neutrino masses are definitely confirmed, it would have important implications for particle physics, astrophysics and cosmology.  相似文献   

9.
Although less than 1% of solar energy is generated in the CNO cycle, it plays a critical role in astrophysics, since this cycle is the primary source of energy in certain more massive stars and at later stages of evolution of solar-type stars. Electron neutrinos are produced in the CNO cycle reactions. These neutrinos may be detected by terrestrial neutrino detectors. Various solar models with different abundances of elements heavier than helium predict different CNO neutrino fluxes. A direct measurement of the CNO neutrino flux could help distinguish between these models and solve several other astrophysical problems. No CNO neutrinos have been detected directly thus far, and the best upper limit on their flux was set in the Borexino experiment. The work on reducing the background in the region of energies of CNO neutrinos (up to 1.74 MeV) and developing novel data analysis methods is presently under way. These efforts may help detect the CNO neutrino flux in the Borexino experiment at the level predicted by solar models.  相似文献   

10.
The first string of the neoteric high-energy neutrino telescope IceCube successfully began operating in January 2005. It is anticipated that, upon completion, the new detector will vastly increase the sensitivity and extend the reach of AMANDA to higher energies. A discussion of the IceCube’s discovery potential for extraterrestrial neutrinos, together with the prospects of new physics derived from the ongoing AMANDA research, will be the focus of this paper. Preliminary results of the first antarctic high-energy neutrino telescope AMANDA searching in the muon-neutrino channel for localized and diffuse excess of extraterrestrial neutrinos will be reviewed using data collected between 2000 and 2003. Neutrino flux limits obtained with the all-flavor dedicated ultrahigh energy and cascade analyses will be described. A first neutrino spectrum above 1 TeV in agreement with atmospheric neutrino flux expectations and no extraterrestrial contribution will be presented, followed by a discussion of a limit for neutralino cold dark matter candidates annihilating in the center of the Sun. on behalf of the IceCube Collaboration The text was submitted by the author in English.  相似文献   

11.
I discuss the implications of the latest data on solar and atmospheric neutrinos which strongly indicate the need for physics beyond the Standard Model. I review the theoretical options for reconciling these data in terms of three-neutrino oscillations. Even though not implied by the data, bimaximal models of neutrino mixing emerge as an attractive possibility. Supersymmetry with broken R-parity provides a predictive way to incorporate it, opening the possibility of testing neutrino anomalies at high-energy collider experiments such as the LHC or at the upcoming long-baseline or neutrino factory experiments. Reconciling, in addition, the hint provided by the LSND experiment requires a fourth, light sterile, neutrino. The simplest theoretical scenarios are the most symmetric ones, in which two of the four neutrinos are maximally mixed and lie at the LSND scale, while the others are at the solar mass scale. The lightness of the sterile neutrino, the nearly maximal atmospheric neutrino mixing, and the generation of Δm 2 &; Δm atm 2 all follow naturally from the assumed lepton-number symmetry and its breaking. These two basic schemes can be distinguished at neutral-current-sensitive solar &; atmospheric neutrino experiments such as the Sudbury Neutrino Observatory. However, underground experiments have not yet proven neutrino masses, since there is a variety of alternative mechanisms. For example, flavor changing interactions can play an important role in the explanation of solar and of contained atmospheric data and could be tested through effects such as μ → e+γ, μ-e conversion in nuclei, unaccompanied by neutrino-less double beta decay. Conversely, the room is still open for heavy unstable neutrinos. A short-lived νμ might play a role in the explanation of the atmospheric data. Finally, in the presence of a sterile neutrino vs, a long-lived ντ in the MeV range could delay the time at which the matter and radiation contributions to the energy density of the Universe become equal, reducing the density fluctuations on the smaller scales and rescuing the standard cold-dark-matter scenario for structure formation. In this case, the light ve νμ, and vs would account for the solar and atmospheric data.  相似文献   

12.
In this paper we study the effect of the anisotropic stress generated by neutrinos on the propagation of primordial cosmological gravitational waves. The presence of anisotropic stress, like the one generated by free-streaming neutrinos, partially absorbs the gravitational waves (GWs) propagating across the Universe. We find that in the standard case of three neutrino families, 22% of the intensity of the wave is absorbed, in fair agreement with previous studies. We have also calculated the maximum possible amount of damping, corresponding to the case of a flat Universe completely dominated by ultrarelativistic collisionless particles. In this case 43% of the intensity of the wave is absorbed. Finally, we have taken into account the effect of collisions, using a simple form for the collision term parameterized by the mean time between interactions, that allows to go smoothly from the case of a tightly coupled fluid to that of a collisionless gas. The dependence of the absorption on the neutrino energy density and on the effectiveness of the interactions opens the interesting possibility of observing spectral features related to particular events in the thermal history of the Universe, like neutrino decoupling and electron–positron annihilation, both occurring at T ~ 1  MeV. GWS entering the horizon at that time will have today a frequency ν ~ 10−9 Hz, a region that is going to be probed by Pulsar Timing Arrays.  相似文献   

13.
We show how to enlarge the νMSM (the minimal extension of the Standard Model by three right-handed neutrinos) to incorporate inflation and provide a common source for electroweak symmetry breaking and for right-handed neutrino masses. In addition to inflation, the resulting theory can explain simultaneously dark matter and the baryon asymmetry of the Universe; it is consistent with experiments on neutrino oscillations and with all astrophysical and cosmological constraints on sterile neutrino as a dark matter candidate. The mass of inflaton can be much smaller than the electroweak scale.  相似文献   

14.
We consider some cosmological consequences of a relic neutrino asymmetry. A relic neutrino degeneracy enhances the contribution of massive neutrinos to the present energy density of the Universe, and modifies the power spectrum of radiation and matter. We also show that even the smallest neutrino mass consistent with the Super—Kamiokande data is relevant for cosmological models, provided that a relic neutrino asymmetry exists.  相似文献   

15.
Neutrinoless double decay (0νββ-decay) is a unique probe for lepton number conservation and neutrino properties. This is a process with long and interesting history with important implications for particle physics and cosmology, but its observation is still elusive. The search for the 0νββ-decay represents the new frontiers of neutrino physics, allowing to determine the Majorana nature of neutrinos and to fix the neutrino mass scale and possible CP violation effects, which could explain the matter-antimatter asymmetry in the Universe. At present a complete theory is missing and, thus, to motivate and guide the experiments the mechanism mediated by light neutrinos is mostly considered. The subject of interest is an effective mass of Majorana neutrinos, which can be deduced from the measured half-life, once this process is definitely observed. The accuracy of the determination of this quantity is mainly determined by our knowledge of the nuclear matrix elements. There is a request to evaluate them with high precision, accuracy and reliability. Recently, there is an increased interest to the resonant neutrinoless double electron capture, which may also establish the Majorana nature of neutrinos. This possibility is considered as alternative and complementary to searches for the 0νββ-decay.  相似文献   

16.
S Mohanty  UA Yajnik 《Pramana》2000,55(1-2):315-325
The contributions made to the Working Group activities on neutrinos and astrophysics are summarized in this article. The topics discussed were inflationary models in Raman-Sundrum scenarios, ultra high energy cosmic rays and neutrino oscillations in 4 flavour and decaying neutrino models.  相似文献   

17.
The observational and theoretical status of neutrino oscillations in connection with solar and atmospheric neutrino anomalies is presented briefly. The effect of neutrino oscillations on the evolution of the early Universe is discussed in detail. A short review is given of the standard Big Bang Nucleosynthesis (BBN) and the influence of resonant and non-resonant neutrino oscillations on active neutrinos and on primordial synthesis of He-4. BBN cosmological constraints on neutrino oscillation parameters are discussed.  相似文献   

18.
Since the pioneering experiment of R. Davis et al., which started neutrino astronomy by measuring the solar neutrinos via the inverse beta decay reaction on 37Cl, all solar neutrino experiments find a considerably lower flux than expected by standard solar models. This finding is generally called the solar neutrino problem. Many attempts have been made to explain this result by altering the solar models, or assuming different nuclear cross sections for fusion processes assumed to be the energy sources in the sun.There have been performed numerous experiments recently to investigate the different possibilities to explain the solar neutrino problem. These experiments covered solar physics with helioseismology, nuclear cross section measurements, and solar neutrino experiments.Up to now no convincing explanation based on “standard” physics was suggested. However, assuming nonstandard neutrino properties, i.e. neutrino masses and mixing as expected in most extensions of the standard theory of elementary particle physics, natural solutions for the solar neutrino problem can be found.It appears that with this newly invented neutrino astronomy fundamental information on astrophysics as well as elementary particle physics are tested uniquely. In this contribution an attempt is made to review the situation of the neutrino astronomy for solar neutrino spectroscopy and discuss the future prospects in this field.  相似文献   

19.
Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.  相似文献   

20.
The highest energy cosmic rays observed possess macroscopic energies and their origin is likely to be associated with the most energetic processes in the Universe. Their existence triggered a flurry of theoretical explanations ranging from conventional shock acceleration to particle physics beyond the Standard Model and processes taking place at the earliest moments of our Universe. Furthermore, many new experimental activities promise a strong increase of statistics at the highest energies and a combination with γ-ray and neutrino astrophysics will put strong constraints on these theoretical models. We give an overview over this quickly evolving research field with a focus on testing new particle physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号