首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transport and field-emission properties of as-synthesized CNx and BNCx (x<0.1) multi-walled nanotubes were compared in detail. Individual ropes made of these nanotubes and macrofilms of those were tested. Before measurements, the nanotubes were thoroughly characterized using high-resolution and energy-filtered electron microscopy, electron diffraction and electron-energy-loss spectroscopy. Individual ropes composed of dozens of CNx nanotubes displayed well-defined metallic behavior and low resistivities of ∼10–100 kΩ or less at room temperature, whereas those made of BNCx nanotubes exhibited semiconducting properties and high resistivities of ∼50–300 MΩ. Both types of ropes revealed good field-emission properties with emitting currents per rope reaching ∼4 μA(CNx) and ∼2 μA (BNCx), albeit the latter ropes se- verely deteriorated during the field emission. Macrofilms made of randomly oriented CNx or BNCx nanotubes displayed low and similar turn-on fields of ∼2–3 V/μm. 3 mA/cm2 (BNCx) and 5.5 mA/cm2 (CNx) current densities were reached at 5.5 V/μm macroscopic fields. At a current density of 0.2–0.4 mA/cm2 both types of compound nanotubes exhibited equally good emission stability over tens of minutes; by contrast, on increasing the current density to 0.2–0.4 A/cm2, only CNx films continued to emit steadily, while the field emission from BNCx nanotube films was prone to fast degradation within several tens of seconds, likely due to arcing and/or resistive heating. Received: 29 October 2002 / Accepted: 1 November 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. Fax: +81-298/51-6280, E-mail: golberg.dmitri@nims.go.jp  相似文献   

2.
Low-threshold field electron emission (FEE) is reported for periodic arrays of micro-tips produced by laser ablation of Si wafers. The best samples show emission at threshold fields as low as 4–5 V/μm for n-type Si substrates and of 1–2 V/μm for p-doped Si substrates, as measured with a flat-screen technique. Auger electron spectroscopy and X-ray electron spectroscopy reveal island-like deviation of the SiO2 stoichiometry on the tip surfaces, with lateral dimensions of less than 100 nm. Microscopic studies using a special field-emission STM show that the emission originates from well-conducting regions of sub-micron size. The experimental data suggest FEE from the tip arrays by a geometric field enhancement of both the individual micro-tip and the narrow conducting channels in the tip body. Received: 3 May 2002 / Accepted: 1 July 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +7-095/135-82-34, E-mail: shafeev@kapella.gpi.ru  相似文献   

3.
The direct growth of a tetrapod-like ZnO nanostructure has been accomplished by using a thermal oxidation method without any catalysts. Studies on the field emission properties of the ordered ZnO nanotetrapods films found that the shape of the ZnO nanotetrapods has considerable effect on their field emission properties, especially the turn-on field and the emission current density. Compared with the rod-like legs ZnO nanotetrapods, the nanotetrapods with acicular legs have a lower turn-on field of 2.7 V/μm at a current density of 10 μA/cm2, a high field enhancement factor of 1830, and an available stability. More importantly, the emission current density reached 1 mA/cm2 at a field of 4.8 V/μm without showing saturation. The results could be valuable for using the ZnO nanostructure as a cold-cathode field-emission material.   相似文献   

4.
A portable modular gas sensor for measuring the 13C/12C isotopic ratio in CO2 with a precision of 0.8‰(±1σ) was developed for volcanic gas emission studies. This sensor employed a difference frequency generation (DFG)-based spectroscopic source operating at 4.35 μm (∼2300 cm-1) in combination with a dual-chamber gas absorption cell. Direct absorption spectroscopy using this specially designed cell permitted rapid comparisons of isotopic ratios of a gas sample and a reference standard for appropriately selected CO2 absorption lines. Special attention was given to minimizing undesirable precision degrading effects, in particular temperature and pressure fluctuations. Received: 16 April 2002 / Revised version: 28 May 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-713/5245237, E-mail: fkt@rice.edu  相似文献   

5.
A single-frequency VCSEL has been used for the first time for high-resolution spectroscopy near 1.5 μm. The incorporated buried-tunnel-junction technology enabled the realization of a long-wavelength InGaAlAs/InP VCSEL with low threshold current (0.925 mA), high output powers (0.576 mW) and low series resistance (60 Ω). The high-speed tuning capability of the long-wavelength VCSEL was investigated and used to conduct high-speed absorption spectroscopy. The peak tuning speed was measured to be 3.4 cm-1/μs and a 4.5-cm-1-wide NH3 spectrum was recorded in 2 μs. The VCSEL was used to measure highly resolved low-pressure spectra for pressures ranging from 9.6 mbar to 1 bar. The measured Doppler-broadened linewidth of 0.02 cm-1 agrees within 3% with the theoretical calculations. The availability and various advantages of 1.3–2-μm single-frequency VCSELs as compared to edge-emitting diode lasers, such as a large current tuning range even at very high tuning frequencies, and low production costs, should significantly expand the application fields for near-infrared laser gas sensors. Received: 17 July 2002 / Revised version: 4 December 2002 / Published online: 12 May 2003 RID="*" ID="*"Corresponding author. Fax: +43-1/58801-15999, E-mail: Gerhard@Totschnig.com  相似文献   

6.
Spectroscopic data of a V3+:YAG passive Q-switch crystal were measured. The absorption recovery time was determined to be of 37±7 ns and the ground state absorption cross section was estimated to be 0.7×10-18 cm2 at 1.44 μm and 3.5×10-18 cm2 at 1.34 μm. Passively Q-switched operation of diode pumped 1.44 μm and 1.3 μm Nd:YAG lasers was demonstrated using this crystal as saturable absorber. Average output powers of 1.42 W (1.44 μm) and 1.56 W (1.34 μm) and pulse energies of 24 μJ (1.44 μm) and 25 μJ (1.34 μm) were observed, respectively. Received: 19 August 2002 / Published online: 12 February 2003 RID="*" ID="*"Corresponding author. Fax: +49-40/42838-6281, E-mail: kretschmann@physnet.uni-hamburg.de  相似文献   

7.
Recovery of tritium from co-deposited layers formed in deuterium–tritium plasma operations of the TFTR (Tokamak Fusion Test Reactor) was investigated by the use of an ArF excimer laser operating at the wavelength of 193 nm. At the laser energy density of 0.1 J/cm2, a transient spike of the tritium-release rate was observed at initial irradiation. Hydrogen isotopes were released in the form of hydrogen-isotope molecules during the laser irradiation in vacuum, suggesting that tritium can be recovered readily from the released gases. In a second experiment, hydrogen (tritium) recovery from the co-deposited layers on JT-60 tiles that had experienced hydrogen-plasma operations was investigated by laser ablation with a focused beam of the excimer laser. The removal rate of the co-deposited layers was quite low when the laser energy density was smaller than the ablation threshold (1.0 J/cm2), but reached 1.1 μm/pulse at the laser energy density of 7.6 J/cm2. The effective absorption coefficient in the co-deposited layers at the laser wavelength was determined to be 1.9 μm-1. The temperature of the surface during the irradiation at the laser energy density of 0.5 J/cm2 was measured on the basis of Planck’s law of radiation, and the maximum temperature during the irradiation decreased from 3570 K at the initial irradiation to 2550 K at the 1000th pulse of the irradiation. Received: 5 August 2002 / Accepted: 7 August 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +81-29/2825917, E-mail: shu@tpl.tokai.jaeri.go.jp  相似文献   

8.
Novel lotiform ZnO nanostructures were synthesized on silicon substrate via simple thermal evaporation. The average diameter of the ZnO nanostructures is ∼1.5 μm. The lotiform-like ZnO structures were formed by nanorods arrays with the average diameter of 70 nm. The as-grown lotiform ZnO nanostructures have excellent field-emission properties such as the low turn-on field of 3.4 V/μm, and very high emission current density of 12.4 mA/cm2 at the field of 9.6 V/μm. These features make the lotiform-like ZnO nanostructures competitive candidates for field-emission-based displays. PACS 61.46.-w; 61.82.Rx; 78.67.-n; 73.63.Bd; 74.78.Na  相似文献   

9.
Field-electron emission from polyimide-ablated films   总被引:1,自引:0,他引:1  
Polyimide-ablated film was deposited by using pulsed laser ablation of a polyimide target, and field-electron emission from the film was observed for the first time. The turn-on field of the polyimide-ablated film is 12 V/μm. The current density is 0.725 mA/cm2, and the emission sites density is on the order of 106/cm2 at the applied field of 24 V/μm. The field-electron emission measurements indicate that this kind of film could be a new cold cathode material. It is suggested that the graphite-like clusters contained in the film play an important role in the field-electron emission. Received: 2 February 2000 / Accepted: 13 March 2000 / Published online: 9 August 2000  相似文献   

10.
Vertically aligned carbon nanotubes have been synthesized from botanical hydrocarbons: Turpentine oil and Eucalyptus oil on Si(100) substrate using Fe catalyst by simple spray pyrolysis method at 700°C and at atmospheric pressure. The as-grown carbon nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and Raman spectroscopy. It was observed that nanotubes grown from turpentine oil have better degree of graphitization and field emission performance than eucalyptus oil grown carbon nanotubes. The turpentine oil and eucalyptus oil grown carbon nanotubes indicated that the turn-on field of about 1.7 and 1.93 V/μm, respectively, at 10 μA/cm2. The threshold field was observed to be about 2.13 and 2.9 V/μm at 1 mA/cm2 of nanotubes grown from turpentine oil and eucalyptus oil respectively. Moreover, turpentine oil grown carbon nanotubes show higher current density in relative to eucalyptus oil grown carbon nanotubes. The maximum current density of 15.3 mA/cm2 was obtained for ∼3 V/μm corresponding to the nanotubes grown from turpentine oil. The improved field emission performance was attributed to the enhanced crystallinity, fewer defects, and greater length of turpentine oil grown carbon nanotubes.  相似文献   

11.
Allergic-type diseases are current nowadays, and they are frequently caused by certain metals. We demonstrated that the metal objects can be covered by Teflon protective thin layers using a pulsed laser deposition procedure. An ArF excimer laser beam was focused onto the surface of pressed PTFE powder pellets; the applied fluences were 7.5–7.7 J/cm2. Teflon films were deposited on fourteen-carat gold, silver and titanium plates. The number of ablating pulses was 10000. Post-annealing of the films was carried out in atmospheric air at oven temperatures between 320 and 500 °C. The thickness of the thin layers was around 5 μm. The prepared films were granular without heat treatment or after annealing at a temperature below 340 °C. At 360 °C a crystalline, contiguous, smooth, very compact and pinhole-free thin layer was produced; a melted and re-solidified morphology was observed above 420 °C. The adhesion strength between the Teflon films and the metal substrates was determined. This could exceed 1–4 MPa depending on the treatment temperature. It was proved that the prepared Teflon layers can be suitable for prevention of contact between the human body and allergen metals and so for avoidance of metal allergy. Received: 12 June 2002 / Accepted: 13 June 2002 / Published online: 4 November 2002 RID="*" ID="*"Corresponding author. E-mail: bhopp@physx.u-szeged.hu  相似文献   

12.
The ohmic contact characteristics of Au/Pt/Ti on degenerated doped n-GaAs were evaluated. Structural and electrical properties were studied by means of X-ray diffraction (XRD), Auger Energy Spectrum (AES) and a HP4145B parameter analyzer. The structural analysis revealed a TiAs phase in the interface between metal multilayer and GaAs at higher annealing temperatures. Electrical measurement showed a minimum ohmic contact resistance of 3×10-4 Ω cm2. The dominant current mechanism was found to be thermionic emission with a barrier height of Φb, of 0.09 V by comparing the experimental data with different theoretical models. Received: 14 December 2001 / Accepted: 4 April 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +86-21/6226-4397, E-mail: zhoujian999@163.net  相似文献   

13.
A pulsed optical parametric oscillator (OPO) operated in an optical cavity with a grazing-incidence grating configuration (GIOPO) was used for sensitive photoacoustic detection of trace quantities of dinitrogen oxide (N2O). The (ν13) combination vibration band of N2O was excited with the idler beam of the GIOPO at 2.86 μm using an optical cavity optimized for the idler beam. The linewidth of the GIOPO could be reduced to 0.4 cm-1, allowing the rotational structure of the absorption spectrum to be resolved. A concentration sensitivity (signal-to-noise ratio=3) of 60 parts in 109 by volume (60 ppb V) N2O in synthetic air was obtained. This may be sufficient for continuous monitoring of N2O in the atmosphere. Received: 29 April 2002 / Revised version: 4 June 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +49-6221/54-4255, E-mail: peter.hess@urz.uni-heidelberg.de  相似文献   

14.
We present the first photoacoustic spectrometer for gas sensing employing both the fundamental and the frequency-doubled radiation of a continuously tunable high-pressure CO2 laser with room temperature operation. A quasi-phase-matched diffusion-bonded GaAs crystal is used in the system for second-harmonic generation. A pulsed photoacoustic detection scheme with a non-resonant cell, equipped with an 80-microphone array, is employed. The wide continuous tuning range in the fundamental (9.2–10.7 μm) and the frequency-doubled (4.6–5.35 μm) regimes, together with the narrow linewidth of 540 MHz (0.018 cm-1) for the 10-μm region and of 1050 MHz (0.0315 cm-1) for the 5-μm region, allow the measurement of gas mixtures, individual species and isotope discrimination. This is illustrated with measurements on NO and CO2. The measured isotope ratio 15 NO/14 NO=(3.58±0.55)×10-3 agrees well with the literature (3.700×10-3) and demonstrates the good selectivity of the system. Received: 30 April 2002 / Revised version: 10 June 2002 / Published online: 2 September 2002 RID="*" ID="*"Corresponding author. Fax: +41-1/633-1077, E-mail: sigrist@iqe.phys.ethz.ch  相似文献   

15.
Patterned gallium nitride nanowires and nanodots have been grown on n-Si (100) substrates by pulsed laser deposition. The nanostructures are patterned using a physical mask, resulting in regions of nanowire growth of different densities. The field emission (FE) characteristics of the patterned gallium nitride nanowires show a turn-on field of 9.06 V/μm to achieve a current density of 0.01 mA/cm2 and an enhanced field emission current density as high as 0.156 mA/cm2 at an applied field of 11 V/μm. Comparing the peak FE current densities of both the nanowires and nanodots, the peak FE current density of nanowires is around 700 times higher than that of the peak FE current density of nanodots since nanodots have a lower aspect ratio compared to nanowires. The field emission results indicate that, besides density difference, crystalline quality as well as the low electron affinity of gallium nitride, high aspect ratio of gallium nitride nanostructures will greatly enhance their field emission properties.  相似文献   

16.
Planar waveguides were formed in Nd:YVO4 crystals by 3.0-MeV Si+-ion implantation at doses of 1×1013–1.5×1015 ions/cm2 at room temperature. The effective refractive indices of the waveguide propagation modes were measured by using a prism-coupling method. It was found that the number of the propagation modes is dependent on the doses for the waveguides in Nd:YVO4. The atom displacement in the near-surface region (about 2 μm beneath the surface) of the Nd:YVO4 crystal induced by the implantation was simulated by using the TRIM 98 (transport and range of ions in matter) code. The possible reasons for the waveguide formation are discussed in a primary way. Received: 17 July 2002 / Revised version: 20 September 2002 / Published online: 11 December 2002 RID="*" ID="*"Corresponding author. Fax: +86-531-8565167, E-mail: drfchen@sdu.edu.cn  相似文献   

17.
A swept-wavelength source is created by connecting four elements in series: a femtosecond fiber laser at 1.56 μm, a non-linear fiber, a dispersive fiber and a tunable spectral bandpass filter. The 1.56-μm pulses are converted to super-continuum (1.1–2.2 μm) pulses by the non-linear fiber, and these broadband pulses are stretched and arranged into wavelength scans by the dispersive fiber. The tunable bandpass filter is used to select a portion of the super-continuum as a scan-wavelength output. A variety of scan characteristics are possible using this approach. As an example, an output with an effective linewidth of approximately 1 cm-1 is scanned from 1350–1550 nm every 20 ns. Compared to previous scanning benchmarks of approximately 1 nm/μs, such broad, rapid scans offer new capabilities: a gas sensing application is demonstrated by monitoring absorption bands of H2O, CO2, C2H2 and C2H6O at a pressure of 10 bar. Received: 5 August 2002 / Revised version: 23 September 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +1-608/265-2316, E-mail: ssanders@engr.wisc.edu  相似文献   

18.
A new laser medium – Yb,Tm:KY(WO4)2 – for diode pumped solid state laser applications operating around 1.9 to 2.0 μm has been investigated and the main laser characteristics are presented. Diode pumping at 981 nm and around 805 nm was realised. For 981-nm pumping, the excitation occurs into Yb3+ ions followed by an energy transfer to Tm3+ions. A slope efficiency of 19% was realised. For pumping around 805 nm, the excitation occurs directly into the Tm3+ ions. Here a maximum slope efficiency of 52%, an optical efficiency of 40%, and output powers of more than 1 W were realised. Using a birefringent quartz plate as an intracavity tuning element, the tunability of the Yb,Tm:KY(WO4)2 laser in the spectral range of 1.85–2.0 μm has been demonstrated. The possibility of laser operation in a microchip cavity configuration for this material has also been shown. Received: 12 March 2002 / Revised version: 20 May 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +49-531/592-4116, E-mail: stefan.kueck@ptb.de  相似文献   

19.
An industrial trace-ammonia sensor based on photoacoustic spectroscopy and CO2 lasers has been developed for measuring ammonia with a 1σ detection limit of 220 parts-per-trillion (ppt) in an integration time of 30 s. The instrument response time for measuring ammonia was 200 s, limited by adsorption effects due to the polar nature of ammonia. The minimum detectable fractional absorbance was 2.0×10-7, and the minimum normalized detectable absorption coefficient for this system was 2.4×10-7 W cm-1/z. The 9R(30) transition of the CO2 laser at 9.22 μm with 2 W of output power was used to probe the strong sR(5,K) multiplet of ammonia at the same wavelength. This sensor was demonstrated with an optically multiplexed configuration for simultaneous measurement in four cells. Received: 3 April 2002 / Revised version: 31 May 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-310/458-0171, E-mail: webber@pranalytica.com  相似文献   

20.
Non-cryogenic, laser-absorption spectroscopy in the mid-infrared has wide applications for practical detection of trace gases in the atmosphere. We report measurements of nitric oxide in air with a detection limit less than 1 nmole/mole (<1 ppbv) using a thermoelectrically cooled quantum cascade laser operated in pulsed mode at 5.26 μm and coupled to a 210-m path length multiple-pass absorption cell at reduced pressure (50 Torr). The sensitivity of the system is enhanced by operating under pulsing conditions which reduce the laser line width to 0.010 cm-1 (300 MHz) HWHM, and by normalizing pulse-to-pulse intensity variations with temporal gating on a single HgCdTe detector. The system is demonstrated by detecting nitric oxide in outside air and comparing results to a conventional tunable diode laser spectrometer sampling from a common inlet. A detection precision of 0.12 ppb Hz-1/2 is achieved with a liquid-nitrogen-cooled detector. This detection precision corresponds to an absorbance precision of 1×10-5 Hz-1/2 or an absorbance precision per unit path length of 5×10-10 cm-1 Hz-1/2. A precision of 0.3 ppb Hz-1/2 is obtained using a thermoelectrically cooled detector, which allows continuous unattended operation over extended time periods with a totally cryogen-free instrument. Received: 1 May 2002 / Revised version: 6 June 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-978/663-4918, E-mail: ddn@aerodyne.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号