首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 171 毫秒
1.
辐射测温以Planck定律为基础通过测量物体表面的发射辐射来反演温度。推导了有限立体角辐射测量条件下的单色测温方程,发现多光谱辐射测温能够实现温度和光谱发射率同时求解通常需满足特定的辐射测量条件:进行微元立体角辐射测量或仅针对漫发射体的有限立体角辐射测量。引入多项式发射率模型,经过数学转化,可以摆脱以上测量限制,得到具有测量普适性的单色测温方程,但却不一定能同时测量光谱发射率。对测温方程组的多解问题进行了初步研究,提出使测量通道数大于待求变量数及采用非线性最小二乘来解决此问题。  相似文献   

2.
辐射测温以Planck定律为基础可以在不同的空间位置测量物体表面的发射辐射来反演温度,以实现物体表面温度的非接触测量,具有重要现实意义。Planck定律确立了光谱辐射强度与黑体温度之间的定量关系,然而在辐射测温理论和实践研究中,实际物体表面光谱发射率的复杂性和未知性成为辐射温度精确测量的主要障碍。基于特定的发射率模型,可以在未知晓物体表面发射率的条件下实现物体温度的非接触测量,但此时难于考虑被测物体的非漫发射特征。为了在有限立体角辐射测量条件下实现非漫发射体温度测量,研究中直接从辐射测量方程出发,经过适当数学转化后,提出了辐射测温中的一个新概念一表观发射率,并对其特征进行了分析,结果表明在对非漫发射体进行温度测量时在同一次测量中,表观发射率虽然形式上很复杂但仅是波长的函数,可以直接针对波长进行模型构建,进而可以在有限立体角辐射测量条件下实现非漫发射体温度的封闭求解,进而给出了有限立体角辐射测量条件下非漫发射体的波长和波段测量方程。同时,还对有限面积条件下的温度测量进行了研究,发现如果具有非漫发射特征有限面积上的温度处处相同,基于表观发射率的构建也可以实现温度的封闭求解。  相似文献   

3.
辐射测温中光谱发射率的表征描述   总被引:1,自引:0,他引:1  
实际物体的光谱发射率表现复杂,给辐射测温的深入研究和实际应用带来了很多困难和不确定性,发射率问题即成为了辐射测温研究中的关键点。文章基于光谱发射率的泰勒多项式展开、波长的无量纲参数、弯曲度指数等分析,描述了谱色测温法中光谱发射率的数学表征,建立了窄波段内的光谱发射率通用函数形式。并通过对不同温度下几种金属的实际光谱发射率进行拟合分析,对此给予了实验上的验证,表明了所提出光谱发射率模型具有应用的适用性,该模型是谱色测温方法应用研究的基础。  相似文献   

4.
基于光谱响应定标的辐射测温方法   总被引:2,自引:0,他引:2  
辐射测温是通过测量物体发出的辐射来反演温度,辐射测量方程中含有与空间位置相关的非光谱参数,通常需通过辐射标定予以确认。而该研究将非光谱参数归入有限项级数形式的光谱发射率中,这既不会影响多通道测温方程组的封闭性,又不会影响真温求解,从而在无需测量数据归一化的条件下,实现了无需空间位置标定的辐射测温,该方法仅需要标定仪器的绝对光谱响应或相对光谱响应,但不能解得发射率。以两个特例分别对多波长测温方法和多谱段测温方法的求解特性进行了研究。结果表明:对于任意的测量矢量,有效波长不相同的多波长测温唯一解是存在的;而多谱段测温时,存在无解区域,双解直线,甚至可能存在三解直线。  相似文献   

5.
辐射测温技术随着辐射测量传感器技术的进步而不断进步,已经由单波长测温发展到多波长和多波段测温,由点温测量发展到二维甚至三维温度场测量。但是在辐射测温更精确反演方面,却很难克服因发射率未知性而引起的模型构建误差。发射率行为难以确定并极大地影响了测温精度,急需发展一种具有通用性,不受发射率具体行为限制,具有较高稳定性的辐射测温方法。双波长测温适用于发射率具有灰体行为的物体温度测量,一系列的发射率补偿算法和波长选择方法均未能很好地实现通用性测量,往往直接单色测量可能误差比比色法更小。多波长测温得到广泛应用,但并不是波长越多越好,发射率模型仍然具有较大局限性。提出了发射率直接限定算法和发射率松驰限定算法来反演温度。在发射率限定条件相同时,这两种方法是等价的。发射率松驰限定算法基于最小二乘算法和松驰因子进行真温求解。推导了松驰限定法的误差传递公式,发现在保证测量信号强度的前提下,λT越小温度误差越小;发射率行为对温度相对误差具有重要影响,在相同的λT条件下,发射率随波长变化越大,在限定区间上覆盖越均匀,测量误差越小。但从直接限定算法可以看出所测波长数越多,测量误差越小。两种方法均可以看出,减少限定区间长度也可以显著地提高测量精度。  相似文献   

6.
近年来,随着国防、工业、科技等领域飞速发展,无论是对于军用动力发射系统还是对于民用钢铁冶炼以及高科技新兴产业,辐射温度测量都具有重要意义。尤其在温度极高且伴随着瞬态测温(小于1 μs)需求的场合,多光谱辐射测温法被广泛运用。多光谱辐射测温法是通过选取被测目标多个特征波长,测量特征波长的辐射信息,再假设发射率与波长相关的数学模型,最终求解得到辐射温度。目前,利用该方法实际测温时,光谱发射率都采用固定的假设数学模型,而针对目标在不同温度状态下,该固定模型则无法进行自适应变化。同样,在不同温度下,如何解算最终的发射率和辐射温度也没有普适性的方法。基于普朗克黑体辐射定律,提出一种被测目标在不同温度下光谱发射率函数基形式不变的思想,简称发射率函数基形式不变法。通过该方法,发射率模型可以根据物体在不同温度状态下,函数系数动态改变来进行自适应变化。同时对于如何解算最终的发射率和辐射温度也相应提出了普适性的方法。通过大量仿真验证以及实际测量光谱辐射照度标准灯和溴钨灯温度实验,证明本文提出的方法比现有的光谱发射率处理方法更加简单实用并且能够有效地提高光谱发射率的计算精度,从而提高辐射温度测量精度。同时具有实用性好、应用广泛等特点。  相似文献   

7.
基于波段带宽的谱段测温法的测温范围分析   总被引:1,自引:0,他引:1  
基于窄波段内普适性的线性发射率模型,将三波长(单色)辐射温度测量拓展到谱段辐射温度测量。在谱段测量中,为实现非失真的有效测量,文中结合传感器的动态范围及最低灵敏度等特性参数 ,考虑多路信号的耦合关系,讨论了有效温度测量的相应限制条件。从而针对具有已知辐射物性的被测物体,通过数值模拟给出谱段测温的有效测温范围相对于传感器的波段带宽的变化趋势。理论上明确 了实现有效温度范围测量对传感器的波段带宽的要求。文章分析将为辐射传感器的设计提供必要的理论指导。  相似文献   

8.
谱色测温法的温度场分区讨论   总被引:4,自引:1,他引:3  
谱色测温法是该课题组提出的一种新的辐射测温法。针对可探测的温度区间,通过辐射光谱耦合信息的分析,考察了区间内所有温度点都能同时被失真测量的必要条件;对于不满足该条件的测量,提出了温度场分区的概念,描述了温度场分区的步骤,并给出了相应的数值模拟结果。研究结果将对谱色测温法的应用具有指导意义。  相似文献   

9.
现代科技发展对温度的辐射测量提出了更高的要求,采用波长封闭求解温度的多波长测温法得到了广泛应用。然而准确确定被测物体发射率的函数表征是测量真实温度的难题。引入仪器测量的概念后,将确定物体发射率的难题转化为确定仪器发射率模型,用物体与仪器发射率光谱分布曲线的交点波长构造真实温度封闭求解的条件,是辐射测温的一大进步。研究提出采用波段积分消除物体辐射二元函数带来的波长对测温的影响,并且积分中值波长恰巧可以取代交点波长,结合“谱色函数”实现了对上述曲线交点的捕捉,完成了真实温度的测量。需要明确,测温所需波长个数并非越多越好。对普朗克定律中第一、第二辐射常数进行修定,得到了广义测温模型,使得测量所需波长数目限定为“3”,其可以作为普朗克定律与发射率级数模型乘积表征所需测温波长的下限数目,这是辐射测温的另一突破。用物体辐射定义层面上的数学形式表示广义模型,实现广义模型与线性仪器发射率的对接。在可见光与近红外大气窗口波段内,对广义模型和仪器测量方程进行数值拟合,验证了定义式与广义模型在任意波段内的适应性。在可见光波段内,对金属钨的实验数据进行仿真计算,结果表明:广义模型通过调整有限的待定参数,很好地...  相似文献   

10.
引入线性发射率模型,基于辐射测温方程组推导了三波段辐射测温方法的等温面方程,该方程是测量信号矢量与测量信号系数矢量的点积。根据测量信号系数矢量是温度的单值函数这一特征,结合二分法求解非线性方程的优点,提出了三通道辐射测温方法的存储二分法求解原理,并进行了C++程序实现。基于C++程序研究了特定测量信号矢量条件下的等温面方程曲线,结果表明在较大的温度求解区间内该曲线具有单调特征,随着V3的增加该曲线尾部逐渐上翘由负变正。误差及时间复杂性分析结果表明二分数为Num时最大误差为(Tmax-Tmin)/2num+1,求解过程包括3Num+1次乘法和2Num+1次加法,没有除法和指数对数运算,极大地提高了温度求解速度。  相似文献   

11.
多光谱辐射测温是通过测量待测物某点的多个光谱辐射强度信息,通过普朗克公式反演获得真实温度。但是,通过普朗克公式获得的多光谱辐射测温方程组,是欠定方程组,即N个方程,N+1个未知数(N个未知的光谱发射率ελi和1个待求真温T)。目前,多采用事先假设一组发射率模型(发射率-波长或发射率-温度模型),假设模型与实际情况如果相符,则反演结果能够满足要求,如果假设模型与实际情况不符,则反演结果误差很大。但是,发射率模型受温度、表面状态、波长等诸多因素影响,难以事先确定发射率模型。因此受未知光谱发射率的制约一直是多光谱辐射测温理论面临的主要障碍,能否在无需任何光谱发射率假设模型的情况下,实现真温和光谱发射率的直接反演一直是多光谱辐射测温理论研究的热点和难点。通过对参考温度模型的分析表明,多光谱辐射测温反演过程的实质是寻找一组光谱发射率,使得每个通道方程解得的真温都相同,如不相同则继续寻找合适的光谱发射率,直到每个通道解得的真温都相等。为此,提出将多光谱辐射测温参考温度模型的求解过程转换为约束优化问题,即在光谱发射率0≤ελi≤1的约束条件下,通过梯度投影算法不断寻找光谱发射率,带入多光谱辐射测温参考温度模型方程组后,计算温度反演值的方差,直到每个光谱通道方程获得的温度值应该近似相等,此时各个光谱通道的温度反演值方差最小,这样就把多光谱辐射真温和发射率的反演问题转换为约束优化问题。约束优化算法是解决这一类问题的主要方法,但为了满足Ax≥b的约束条件,将0≤ελi≤1分解为ελi≥0和-ελi≥-1的两个约束条件,从而满足了约束优化问题Ax≥b的约束条件。这样就可以通过约束优化算法在无需任何光谱发射率假设模型的条件下,直接求解真温和光谱发射率。实验采用六种不同光谱发射率分布模式(随波长递增、递减、凸波动、凹波动、“M”型波动、“W”型波动)的材料为研究对象,以验证新算法对不同材料光谱发射率分布反演的适应性,利用Matlab的minRosen函数,选择光谱发射率的初始值均为0.5(取中间值,提高计算效率)。针对六种不同光谱发射率模型的仿真结果表明,新算法无需任何有关发射率的先验知识,对不同发射率模型反演结果均表现较好,在真温1 800 K的情况下,绝对误差均小于20 K,相对误差均小于1.2%,新算法具有无需考虑任何光谱发射率先验知识、反演精度较高及适合于各种发射率模型等优点,进一步完善了多光谱辐射测温理论,在高温测量领域具有良好的应用前景。  相似文献   

12.
固体火箭发动机羽流具有高温、高速与强辐射特征,羽流温度是发动机工作状态与性能的重要表征参数。准确测量固体火箭发动机羽流温度对了解发动机内部燃烧情况以及发动机综合性能具有重要的参考价值。随着激光与光谱学的发展,激光光谱技术逐步应用于固体推进剂燃烧及发动机羽流温度测量。辐射光谱测温法通过测量火焰辐射光谱来实现温度的非接触在线测量,具有测温范围宽、响应快及可靠性高等优点,可应用于固体火箭发动机羽流温度测量。在此提出了基于火焰辐射光谱的固体火箭发动机羽流温度测量方法,采用350~1 000 nm波段光纤光谱仪搭建了发动机羽流火焰辐射光谱测量系统,利用标准辐射黑体炉开展光谱仪响应系数标定,获得响应系数随波长的变化曲线,并以此用作羽流辐射光谱数据修正。之后将该测量系统应用于标准Φ118固体火箭发动机地面试验,开展典型12%铝质量含量推进剂发动机羽流辐射光谱实验测量,选取不同时刻羽流辐射光谱分析了发动机羽流辐射光谱特征,并利用双色法灰性判断原理对羽流火焰灰体特性进行讨论,验证在675~745 nm波段发动机羽流火焰辐射可近似认为灰体,该波段辐射率随波长变化最大相对偏差为4.01%,相对均方差为1.53%。因此,基于普朗克辐射定律开展辐射光谱拟合参数获得不同时刻羽流温度与辐射率参数,并讨论测量结果与发动机工作状态的关系。最后,开展12%,15%与19%铝质量含量的不同推进剂配方固体火箭发动机羽流辐射光谱测量,将辐射光谱法温度测量值与理论热力计算值进行比较,两者最大偏差值为5.40%,讨论了不同铝含量推进剂发动机羽流辐射光谱特征,并结合温度与辐射率测量结果,分析了固体推进剂铝含量对辐射光谱、羽流温度及辐射率的影响。通过固体火箭发动机羽流辐射光谱测温方法研究,为固体火箭发动机性能评估及推进剂配方优化等研究提供了有效的羽流参数测量手段。分析获得的推进剂铝含量对发动机羽流辐射光谱、温度及辐射率参数的影响,为降低固体发动机羽流特征信号提供了重要的实验数据支撑。  相似文献   

13.
温度测量是工业生产或科学实验中保证产品质量、降低生产成本和确保实验安全的重要因素之一。目前非接触的测温方法以辐射测温法为主,二次测量法是多光谱辐射测温中一种常用的方法。但是,二次测量法不适用于实时数据处理。针对此问题,基于多光谱亮度温度数学模型引入了发射率模型约束条件,提出了一种多光谱辐射真温快速反演法。对于非黑体,根据不同波长下的亮度温度的关系,得出当亮度温度在一个区间内是增函数或者常数函数时,发射率在该区间内是增函数;当亮度温度在一个区间内是减函数时,则发射率在该区间内满足一个关于发射率和波长的不等式。该发射率模型约束条件根据亮度温度的信息,将发射率假设值的构建由多类减少到一类,避免了不必要的发射率的构建。实验分别采用实际发射率随波长单调下降、单调上升、先下降再上升、先上升再下降和随机变化的具有代表性的五个被测目标,针对两个被测温度点进行了仿真对比分析。结果表明,与二次测量法相比,对于同一个被测目标,在相同的温度初值和相同的发射率搜索范围下,新算法在保证精度的情况下,不仅所得结果相同,而且处理速度提升了19.16%~43.45%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号