首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nickel hydroxide with a unique mixed phase α/β-Ni(OH)2 was prepared by partially substituting Ca2+ for Ni2+ with supersonic co-precipitating method firstly. The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The results show that the Ca-substituted Ni(OH)2 by adding PO4 3? is α/β mixed phase, while the undoped Ni(OH)2 and the Ca-substituted Ni(OH)2 without adding PO4 3? are pure β phase. Furthermore, the Ca-substituted Ni(OH)2 by adding PO4 3? exhibits irregular shape and contains many intercalated water molecules and anions as proven by SEM and FT-IR. Meanwhile, the prepared samples were added into micro-sized beta nickel hydroxide to form biphase electrode materials for Ni-MH battery. The electrochemical performances of the biphase electrodes were characterized by cyclic voltammetry (CV) and charge/discharge tests. The results demonstrate that the biphase electrode with mixed phase α/β-Ni(OH)2 exhibits higher electrochemical activity, better electrochemical reversibility and charge efficient, higher discharge potential, and better cyclic stability. The specific discharge capacity of Ca-substituted α/β-Ni(OH)2 electrode can retain 271.7 and 238 mAh/g after 80 cycles at 0.2 and 0.5 C, respectively. This indicates that it may be a promising positive active material for alkaline secondary batteries. The results reported in this work may be useful for the designing and synthesizing of nickel hydroxide materials with superior performance.  相似文献   

2.
We describe in this paper the synthesis and the characterization of Li4Ti5O12-reduced graphene oxide (LTO-RGO) composite and demonstrate their use as hybrid supercapacitor, which is consist of an LTO negative electrode and activate carbon (AC) positive electrode. The LTO-RGO composites were synthesized using a simple, one-step process, in which lithium sources and titanium sources were dissolved in a graphene oxide (GO) suspension and then thermal treated in N2. The lithium-ion battery with LTO-RGO composite anode electrode revealed higher discharge capacity (167 mAh g?1 at 0.2 C) and better capacity retention (67%) than the one with pure LTO. Meanwhile, compared with the AC//LTO supercapacitor, the AC//LTO-RGO hybrid supercapacitor exhibits higher energy density and power density. Results show that the LTO-RGO composite is a very promising anode material for hybrid supercapacitor.  相似文献   

3.
Mesoporous Ni(OH)2/Co(OH)2 electrode materials were synthesized via a simple one-pot procedure by combining homogeneous precipitation and stepwise precipitation method. The configuration of the porous Ni(OH)2/Co(OH)2 electrode materials synthesized provides 3D electron transmission channels through a high conductive Co(OH)2 distributed in the peripheral nanolayer of the composites, which is beneficial to rate capability and cycle stability. The Ni(OH)2/Co(OH)2 electrode materials have a specific surface area of 229 m2 g?1, which is approximately 40% higher than that of Ni(OH)2 (163 m2 g?1). Their specific capacitance is up to 1202 and 1022 F g?1 at the current densities of 10 and 20 A g?1, respectively. Furthermore, the capacitance retention of the electrode materials at the current density of 10 A g?1 is 98% after 5000 cycles. The synthesis method provides a novel simple route to fabricate heterostructure materials for capacitors with high electrochemical performance.
Graphical abstract ?
  相似文献   

4.
Ni20[(OH)12(H2O)6][(HPO4)8(PO4)4]·12H2O nanorods are successfully synthesized via a one‐pot hydrothermal reaction. A high‐performance flexible asymmetric all‐solid‐state supercapacitor based on the obtained Ni20[(OH)12(H2O)6][(HPO4)8(PO4)4]·12H2O nanorods (positive electrode) and graphene nanosheets (negative electrode) is successfully assembled. It is the first report of this nanomaterial applied for all‐solid‐state supercapacitors. Interestingly, a maximum volumetric energy density of 0.446 mW h cm?3 at a current density of 0.5 mA cm?2 and a maximum power density of 44.1 mW cm?3 at a current density of 6.0 mA cm?2 are achieved by the as‐assembled device. What's more, the device also shows excellent mechanical flexibility and little capacitance change after over 5000 charge/discharge cycles at a current density of 0.5 mA cm?2.  相似文献   

5.
Co(OH)2 nanoparticles were synthesized using only CoSO4·7H2O and NaOH as reactants without other auxiliary reagents via a simple, low-cost and practical ball-milling technique and investigated as the active electrode materials for supercapacitors. The structure and morphology of the resulting Co(OH)2 samples were examined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM). The observations revealed the formation of brucite-like phase of β-Co(OH)2, which had an irregular sphere-like shape with an average size of 50-100 nm. When investigated as electrode materials for supercapacitors, the β-Co(OH)2 exhibited good energy-storage performances in terms of high specific capacitance of 599 F g−1 and excellent capacity retention, suggesting its potential application in the electrode material for supercapacitors.  相似文献   

6.
In our previous study, Mn-substituted nickel hydroxide (Ni0.8Mn0.2(OH)2) was prepared by a simple ball milling method to reduce the cost of nickel hydroxide for alkaline secondary battery, but compared to the Ni(OH)2 electrode, the Ni0.8Mn0.2(OH)2 one showed an obvious decrease in its discharge potential. In this paper, Zn and Mn co-substituted nickel hydroxide (Ni0.8Mn0.2???x Zn x (OH)2, x?=?0–0.075) is prepared by ball milling. The results of the cyclic voltammetry (CV) tests illustrate that the co-reduction of Mn(IV) to Mn(III) and NiOOH is observed on the Ni0.8Mn0.2???x Zn x (OH)2 electrodes, and it has a lower reduction potential than NiOOH. The co-substitution of Zn can effectively increase the co-reduction potential. The ball-milled Ni0.8Mn0.15Zn0.05(OH)2 electrode has a similar capacity (about 270 mAh g?1 at a 0.2C rate) and cycling durability to the commercial Ni(OH)2 with ball milling treatment, but the former has better high-power performance.  相似文献   

7.
LiCoO2 particles were synthesized by a sol-gel process. X-ray diffraction analysis reveals that the prepared sample is a single phase with layered structure. A hybrid electrochemical capacitor was fabricated with LiCoO2 as a positive electrode and activated carbon (AC) as a negative electrode in various aqueous electrolytes. Pseudo-capacitive properties of the LiCoO2/AC electrochemical capacitor were determined by cyclic voltammetry, charge–discharge test, and electrochemical impedance measurement. The charge storage mechanism of the LiCoO2-positive electrode in aqueous electrolyte was discussed, too. The results showed that the potential range, scan rate, species of aqueous electrolyte, and current density had great effect on capacitive properties of the hybrid capacitor. In the potential range of 0–1.4 V, it delivered a discharge specific capacitance of 45.9 Fg–1 (based on the active mass of the two electrodes) at a current density of 100 mAg–1 in 1 molL–1 Li2SO4 aqueous electrolyte. The specific capacitance remained 41.7 Fg–1 after 600 cycles.  相似文献   

8.
Liu Lili  Yang Zhanhong 《Ionics》2018,24(7):2035-2045
A series of Zn–Al layered double hydroxides (LDHs) and ZnSn(OH)6 composites were successfully synthesized by hydrothermal method. The characteristic diffraction peaks of composites analyzed by X-ray diffraction (XRD) display that Zn–Al LDHs have been coupled with ZnSn(OH)6, among which the composite containing 10% ZnSn(OH)6 shows the best crystallinity. Besides, scanning electron microscopy (SEM) was conducted to observe the crystal morphologies. The electrodes were carried out by electrochemical measurements such as cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and cycling performance. The results suggest that the discharge specific capacity of composite containing 10% ZnSn(OH)6 is basically kept at 354 mAh g?1 with a capacity retention rate about 98.3% after 800 cycles. Meanwhile, the CV measurement manifests that this material has the smallest redox peak potential difference (0.31 V) than that of others. And the electrode reaction of composite containing 10% ZnSn(OH)6 occurs easily because the EIS test implies that its charge transfer resistance has been declined by 11.57 Ω cm2, accompanied by the ohmic resistance decreasing by 0.48 Ω cm2. The findings mentioned above can be attributed to the high electron mobility and electrical conductivity of ZnSn(OH)6. All the results show that the electrode of LDHs with 10% ZnSn(OH)6 has quite outstanding electrochemical performances when used as the negative material for zinc–nickel alkaline batteries.  相似文献   

9.
Fe‐Co hydroxides with different Fe/Co atomic ratios grown on nickel foams are synthesized by one‐step electrochemical deposition. The prepared samples are characterized by X‐ray diffraction, X‐ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. It was found that the influence of initial Fe/Co ratios in the precursor solutions on the structure and electrochemical performance of electrodeposited products is significant. Fe(OH)3 shows particle shape with average diameter of 200 nm. With addition of Co ions, frame‐like structure consisting of smaller particles is formed for Fe‐Co hydroxides. Based on the morphology of Co(OH)2, it is deduced that Co(OH)2 serves as a network former constructing a tridimensional frame network structure. Fe‐Co hydroxide with Fe/Co ratio of 1:1 exhibits two types of structure features: nanoflake‐like network structure overall and nanoparticle structure with numerous mesoporous microscopically. As the supercapacitor electrode materials, the as‐prepared Fe‐Co hydroxide electrode with Fe/Co ratio of 1:1 exhibits highest specific capacitance of 2255.6 F g?1 at the current density of 1 A g?1 and also shows good cycling performance of 73.5% capacity retention at current density of 10 A g?1 after 2000 cycles. This work provides a facile method to produce promising Fe‐Co hydroxide electrode materials with high performance for supercapacitors.  相似文献   

10.
P. Shuk  U. Guth 《Ionics》1995,1(2):106-111
Modified active electrode materials based upon rare earth manganites were developed for different solid electrolyte electrochemical cells. The preparation, structure, thermal expansion, the state of oxygen on the surface, the electronic and ionic conductivity of the perovskites Ln1−xCa(Sr)xMn1−y(Co, Ni)yO3−δ with various compositions and electrode kinetics on the manganite electrode/solid electrolyte interfaces were investigated. The value of the bulk conductivity was larger than 150 S/cm (at 1100 K) and increased significantly with increasing contents of Ni or Co. The thermal expansion coefficients of rare earth manganites were close to those of ZrO2 based solid electrolytes. The expansion coefficients of Co or Ni subsituted lanthanum manganites increase with Co or Ni substitution and are over 12•10−6K−1. The ionic conductivities were determined using encapsulated zirconia microelectrodes based on a Hebb-Wagner analysis of the currentvoltage curves. The relatively high oxide ion conductivity of 10−5 S/cm at 900...1000 K was found by Ni or Co doped manganites. Studies of the electrode kinetics using complex impedance spectroscopy show that Co and Ni doped manganites have advantages if used as electrodes as compared with these for noble metals. Paper presented at the 1st Euroconference on Solid State Ionics, Zakynthos, Greece, 11–18 Sept. 1994  相似文献   

11.
All-electron scalar relativistic calculations on Au5X (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) clusters have been performed by using density functional theory with the generalized gradient approximation. Our calculation results indicate that all the lowest energy geometries of Au5X clusters have planar structures; the doped X atoms prefer to occupy the fourfold coordination site. Except Au5Fe, Au5Co and Au5Zn, for other clusters including pure Au6 cluster, the HOMO are delocalized obviously with a contribution from all atoms in the cluster. On the contrary, the electron localization in Au5Zn is very strong resulting in the least stability of this cluster. Au5Cu cluster with six delocalized electrons being defined as magic number for two-dimensional system has the largest VIP and deepest HOMO energy level. With the substitution Au for X atoms, the metallicity of all Au5X clusters is reinforced.  相似文献   

12.
Nickel hydroxide is widely used as an active material in Ni-Cd and Ni-MeH batteries. The electrochemical properties such as charge acceptance, electronic conductivity etc. can be dramatically influenced by doping β-Ni(OH)2 with small amounts of Co, Cd or Zn. Stabilizing of α-Ni(OH)2 offers the possibility to obtain nickel electrodes with enhanced capacity. The stabilizing of α-Ni(OH)2 is achieved by replacing at least 20% of the nickel by a trivalent metal ion. The structural features of the undoped and doped nickel hydroxides and the resulting electrochemical properties are discussd and reviewed. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

13.
Dry O2 oxidation up to 400°C, water immersion at room temperature or H2S sulphidation at 400°C forms oxide or sulphide films on polycrystalline Co and Ni foils. X-ray photoelectron spectra (XPS) of the Co 2p and Ni 2p core levels and valence band (VB) structure changes allow the identification of the chemical state of such films and their electronic properties. They are compared with the films obtained on Mo in similar conditions. Ni appears less reactive than Co during O2 or water oxidation and is considered as a more noble metal. Dry oxidation mainly induces CoO while water immersion induces formation of CoO(OH). For Ni, phases like Ni2O3, Ni(OH)2 and/or NiO(OH) are the most probable products, respectively. H2S sulphidation always produces a sulphur-rich Co or Ni phase. The VB response to sulphidation of the three studied metals shows that Co or Ni sulphides are potential electron-donors to MoS2. Such results are relevant to the synergy observed in hydrotreating catalysis with these sulphides.  相似文献   

14.
Nickel-cobalt binary oxide/reduced graphene oxide (G-NCO) composite with high capacitance is synthesized via a mild method for electrochemical capacitors. G-NCO takes advantages of reduced graphene oxide (RGO) and nickel-cobalt binary oxide. As an appropriate matrix, RGO is beneficial to form homogeneous structure and improve the electron transport ability. The binary oxide owns more active sites than those of nickel oxide and cobalt oxide to promote the redox reaction. Attributed to the well crystallinity, homogeneous structure, increased active sites, and improved charge transfer property, the G-NCO composite exhibits highly enhanced electrochemical performance compared with G-NiO and G-Co3O4 composites. The specific capacitance of the G-NCO composite is about 1750 F g?1 at 1 A g?1 together with capacitance retention of 79 % (900/1138 F g?1) over 10,000 cycles at 4 A g?1. To research its practical application, an asymmetric supercapacitor with G-NCO as positive electrode and activated carbon as negative electrode was fabricated. The asymmetric device exhibits a prominent energy density of 37.7 Wh kg?1 at a power density of 800 W kg?1. The modified G-NCO composite shows great potential for high-capacity energy storage.  相似文献   

15.
张小超  赵丽军  樊彩梅  梁镇海  韩培德 《物理学报》2012,61(7):77101-077101
采用基于密度泛函理论的第一性原理方法对未掺杂以及不同浓度过渡金属Fe,Co,Ni,Zn掺杂金红石TiO2的超晶胞体系进行了几何优化,并讨论了其晶格常数,电子能带结构和光学性质.研究结果表明:掺杂前后的晶格参数与实验值偏差在3.6%以下;适量的过渡金属掺杂不但影响体系能带结构,拓宽光吸收范围,而且扮演着俘获电子的重要角色,有利于光生电子-空穴对的有效分离以及增强光吸收能力;Fe,Co,Ni,Zn最佳理论掺杂体系分别为Ti0.75Fe0.25O2,Ti0.75Co0.25O2,Ti0.75Ni0.25O2,Ti0.83Zn0.17O2;Fe,Co,Ni3d态分裂为t2g和eg态,分别贡献于价带高能级和导带低能级部分,促进了电子-空穴对的生成,从而可提高TiO2的光催化性能;Zn3d态电子成对填满轨道,不易被激发,故光催化活性无明显提高.  相似文献   

16.
Ni(OH)2 nanoparticles were decorated on mesoporous carbon spheres (MPCS) using a simple hard template method. The MPCS were derived from sodium carboxymethyl cellulose. As-prepared MPCS/Ni(OH)2 nanocomposites were used as electrode materials for supercapacitors. These composites exhibited better electrochemical properties than a pristine mesoporous carbon sphere owing to the synergistic effect. However, the increase in Ni(OH)2 is not proportional to the electrochemical performance improvement. The addition of an optimal amount of Ni(OH)2, typically 1:20 by weight (MPCS:NiCl2·6H2O), showed an excellent specific capacitance of 1338.296 F g?1 at a scan rate of 5 mV s?1. These encouraging results indicate excellent potential for the development of highly capacitive energy storage devices for practical applications.  相似文献   

17.
3D reduced graphene oxide (rGO)‐wrapped Ni3S2 nanoparticles on Ni foam with porous structure is successfully synthesized via a facile one‐step solvothermal method. This unique structure and the positive synergistic effect between Ni3S2 nanoparticles and graphene can greatly improve the electrochemical performance of the NF@rGO/Ni3S2 composite. Detailed electrochemical measurements show that the NF@rGO/Ni3S2 composite exhibits excellent supercapacitor performance with a high specific capacitance of 4048 mF cm?2 (816.8 F g?1) at a current density of 5 mA cm?2 (0.98 A g?1), as well as long cycling ability (93.8% capacitance retention after 6000 cycles at a current density of 25 mA cm?2). A novel aqueous asymmetric supercapacitor is designed using the NF@rGO/Ni3S2 composite as positive electrode and nitrogen‐doped graphene as negative electrode. The assembled device displays an energy density of 32.6 W h kg?1 at a power density of 399.8 W kg?1, and maintains 16.7 W h kg?1 at 8000.2 W kg?1. This outstanding performance promotes the as‐prepared NF@rGO/Ni3S2 composite to be ideal electrode materials for supercapacitors.  相似文献   

18.
We have studied the influence of the growth conditions on the structural characteristics of sputtered Py(Fe20Ni80)/ Gd/Py(Fe20Ni80) thin films. Auger electron spectroscopy reveals the existence of Ni in the Gd layer. The Ni concentration profile appears asymmetric with a higher concentration close to the top Py layer. This asymmetrical Ni concentration produces a different coercivity of each Py layer. It is possible to reduce the Ni interdiffusion by using multilayers based on Py/Gd bilayers separated by Mo spacers between the Py/Gd bilayers. In these samples we have obtained an enhancement of the structural and magnetic properties. PACS 81.15.Cd; 66.30.-h  相似文献   

19.
Hexagonal β-Ni(OH)2 nanosheets with thickness of ~12 nm were synthesized by a hydrothermal method at 150 °C using nickel chloride as nickel source and morpholine as alkaline. Electrodes for application in pseudocapacitor were assembled through a traditional technique: pressing a mixture of β-Ni(OH)2 nanosheets and acetylene black onto nickel foam. Due to the hexagonal shape of rigid β-Ni(OH)2 nanosheet and the mediation of surface-modified glycerol during electrochemical charge–discharge cycles, a nanostructure of electrode material with facile interior pathway for the transfer of electrolyte was formed. As a result, the as-formed electrodes presented high specific capacitance of 1,917 F g?1 at current density of 1.6 A g?1 in 3 mol L?1 KOH solution. At high charge and discharge current density of 31.3 A g?1, the electrodes still remained a high specific capacitance of 1,289 F g?1. The interesting results obtained from this investigation may provide a new insight for the synthesis of electrode materials with high electrochemical performance.  相似文献   

20.
The aim of the present work is to examine if the Hume-Rothery stabilisation mechanism holds across whole solid solution ranges in a series of gamma-brasses with especial attention to the role of vacancies introduced into the large unit cell. The concentration dependence of the number of atoms in the unit cell, N, for gamma-brasses in the Cu–Zn, Cu–Cd, Cu–Al, Cu–Ga, Ni–Zn and Co–Zn alloy systems was determined by measuring the density and lattice constants at room temperature. The number of itinerant electrons in the unit cell, e/uc, is evaluated by taking a product of N and the number of itinerant electrons per atom, e/a, for the transition metal element deduced earlier from the full-potential linearised augmented plane wave (FLAPW)-Fourier analysis. The results are discussed within the rigid-band model using as a host the density of states (DOS) derived earlier from the FLAPW band calculations for the stoichiometric gamma-brasses Cu5Zn8, Cu9Al4 and TM2Zn11 (TM = Co and Ni). A solid solution range of gamma-brasses in Cu–Zn, Cu–Cd, Cu–Al, Cu–Ga and Ni–Zn alloy systems is found to fall inside the existing pseudogap at the Fermi level. This is taken as confirmation of the validity of the Hume-Rothery stability mechanism for a whole solute concentration range of these gamma-brasses. An exception to this behaviour was found in the Co–Zn gamma-brasses, where orbital hybridisation effects are claimed to play a crucial role in stabilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号