首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
First-principles calculations have been performed on the structural, electronic, and magnetic properties of seven 3d transition-metal(TM) impurities(V, Cr, Mn, Fe, Co, Ni, and Cu) doped armchair(5,5) and zigzag(8,0) beryllium oxide nanotubes(BeONTs). The results show that there exists a structural distortion around the 3d TM impurities with respect to the pristine BeONTs. The magnetic moment increases for V- and Cr-doped BeONTs and reaches a maximum for Mn-doped BeONT, and then decreases for Fe-, Co-, Ni-, and Cu-doped BeONTs successively, consistent with the predicted trend of Hund’s rule to maximize the magnetic moments of the doped TM ions. However, the values of the magnetic moments are smaller than the predicted values of Hund’s rule due to the strong hybridization between the 2p orbitals of the near O and Be ions of BeONTs and the 3d orbitals of the TM ions. Furthermore, the V-, Co-, and Ni-doped(5,5) and(8,0) BeONTs with half-metal ferromagnetism and thus 100% spin polarization character are good candidates for spintronic applications.  相似文献   

2.
The local magnetic structures around substitutional 3d transition metal impurities at cation sites in zinc blende structures of III-V (GaN, GaAs) and II-VI (ZnTe) semiconductors are investigated by using a spin-polarized density functional theory. We find that Cr-, Co-, Cu-doped GaN, Cr-, Mn-doped GaAs and Cr-, Fe-, Ni-doped ZnTe are half metallic with 100% spin polarization. The magnetic moments due to these 3d transition metal (TM) ions are delocalized quite significantly on the surrounding ions of host semiconductors. These doped TM ions have long range interactions mediated through the induced magnetic moments in anions and cations of host semiconductors. For low impurity concentrations Mn in GaAs also has zero magnetic moment state due to Jahn-Teller structural distortions. Based upon half metallic character and delocalization of magnetic moments in the anions and cations of host semiconductors these above mentioned 3d TM-doped GaN, GaAs and ZnTe seem to be good candidates for spintronic applications.  相似文献   

3.
We used first-principles calculations to conduct a comparative study of the structure and the electronic and magnetic properties of SrTiO3 doped with a transition metal (TM), namely, Cr, Mn, Fe, Co, or Ni. The calculated formation energies indicate that compared with Sr, Ti can be substituted more easily by the TM ions. The band structures show that SrTi0.875Cr0.125O3 and SrTi0.875Co0.125O3 are half metals, SrTi0.875Fe0.125O3 is a metal, and SrTi0.875Mn0.125O3 is a semiconductor. The 3d TM-doped SrTiO3 exhibits various magnetic properties, ranging from ferromagnetism (Cr-, Fe-, and Co-doped SrTiO3) to antiferromagnetism (Mn-doped SrTiO3) and nonmagnetism (Ni-doped SrTiO3). The total magnetic moments are 4.0μB, 6.23μB, and 2.0μB for SrTi0.75Cr0.25O3, SrTi0.75Fe0.25O3, and SrTi0.75Co0.25O3, respectively. Room-temperature ferromagnetism can be expected in Cr-, Fe-, and Co-doped SrTiO3, which agrees with the experimental observations. The electronic structure calculations show that the spin polarizations of the 3d states of the TM atoms are responsible for the ferromagnetism in these compounds. The magnetism of TM-doped SrTiO3 is explained by the hybridization between the TM-3d states and the O-2p states.  相似文献   

4.
张敏  史俊杰 《中国物理 B》2014,23(1):17301-017301
The electronic structure and magnetic properties of the transition-metal(TM) atoms(Sc–Zn, Pt and Au) doped zigzag GaN single-walled nanotubes(NTs) are investigated using first-principles spin-polarized density functional calculations. Our results show that the bindings of all TM atoms are stable with the binding energy in the range of 6–16 eV. The Sc- and V-doped GaN NTs exhibit a nonmagnetic behavior. The GaN NTs doped with Ti, Mn, Ni, Cu and Pt are antiferromagnetic. On the contrary, the Cr-, Fe-, Co-, Zn- and Au-doped GaN NTs show the ferromagnetic characteristics. The Mn- and Codoped GaN NTs induce the largest local moment of 4μB among these TM atoms. The local magnetic moment is dominated by the contribution from the substitutional TM atom and the N atoms bonded with it.  相似文献   

5.
CO adsorption on TM-doped magnesia nanotubes (TM = Ni, Pd and Pt) have been studied by using density functional theory. Our calculation results show that CO favors adsorption on TM-doped magnesia nanotubes in the form of C atom bonding with TM atom. Fukui indices analysis clearly exhibits that doping of impurity TM atom allows for a noticeably enhancement of nucleophilic reactivity ability of magnesia nanotube. The adsorption energies demonstrate that CO molecule is more strongly bound on the 3-fold TM atoms than the 4-fold TM atoms. This finding is well confirmed by TM-C bond length, charge transfer and C-O vibrational frequency. The high adsorption energy of 2.55 eV is found when CO adsorbs on 3-fold Pt in Pt-doped magnesia nanotubes, implying the kind of the doping TM atom has a significant influence on the chemical reactivity.  相似文献   

6.
A rather complete work on transition-metal (TM)-doped TiO2 thin films has been done and room ferromagnetism (FM) is found in the whole series of Sc/V/Cr/Mn/Fe/Co/Ni-doped TiO2 films. Not only is it remarkable that for the first time, FM at high temperature was achieved in TM-doped TiO2, but also a very big magnetic moment of 4.2μB/atom could be obtained, and direct evidences of real ferromagnets with big domains were shown as well. A similar chemical trend was achieved in TM-doped In2O3 films, however, the observed magnetic moment is rather modest, with the maximal value is of only 0.7μB/atom for Ni-doped In2O3 films. As regards TM-doped SnO2 films, observed magnetic moments could be very large, with the maximum saturation of 6μB per impurity atom for Cr-doped SnO2 thin films, but it could be influenced very much depending on substrate types. On the other hand, results on TM-doped ZnO films interestingly have revealed that in these systems, the magnetism more likely resulted from defects and/or oxygen vacancies.  相似文献   

7.
By performing the first-principles calculations, we investigated the sensitivity and selectivity of transitional metal (TM, TMSc, Ti, V, Cr and Mn) atoms doped graphene toward NO molecule. We firstly calculated the atomic structures, electronic structures and magnetic properties of TM-doped graphene, then studied the adsorptions of NO, N2 and O2 molecules on the TM-doped graphene. By comparing the change of electrical conductivity and magnetic moments after the adsorption of these molecules, we found that the Sc-, Ti- and Mn-doped graphene are the potential candidates in the applications of gas sensor for detection NO molecule.  相似文献   

8.
Structural, electronic and magnetic properties of six 3d transition metals (TM=V, Cr, Mn, Fe, Co and Ni) linear monoatomic chains adsorbed on the (5,5) boron nitride nanotube (BNNT) at five different sites have been investigated by first-principle calculations. The results indicate all TM chains can be spontaneously adsorbed on the outer surface of the BNNT. The stable adsorption sites are different for different TM chains. All TM chains can be adsorbed on the N site, while the adsorption on the Z site is unstable. The dispersion character occurs in energy band curves of stable TM/BNNT systems and bring about the band gap disappearance in comparison with that of pure (5,5) BNNT. Interestingly, the TM/BNNT systems with nearly half-filled 3d metals V and Cr at H and N sites, as well as Mn at A site show a half-metal character and are usable in spintronics devices. The different electronic properties of BNNT can also be achieved through decorations of the same TM chain on different sites. The TM chain adsorbed BNNT systems exhibit high stability, promising electronic properties and high magnetic moments, which may be useful for a wide variety of next-generation nanoelectronic device components.  相似文献   

9.
Electronic and magnetic properties of V-doped ZnO nanotubes in which one of Zn^2+ ions is substituted by V^2+ ions are studied by the first-principles calculations of plane wave ultra-soft pseudo-potential technology based on the spin-density function theory. The computational results reveal that spontaneous magnetization in Vdoped (9,0) ZnO nanotubes can be induced without p-type or n-type doping treatment, and the ferromagnetism is isotropic and independent of the chirality and diameter of the nanotubes. It is found that V-doped ZnO nanotubes have large magnetic moments and are ferromagnetic half-metal materials. Moreover, the ferromagnetic coupling among V atoms is generated by O 2p electron spins and V 3d electron spins localized at the exchanging interactions between magnetic transitional metal (TM) impurities. The appearance of ferromagnetism in V-doped ZnO nanotubes gives some reference to fabrication of a transparent ferromagnet which may have a great impact on industrial applications in magneto-optical devices.  相似文献   

10.
The geometric, electronic and magnetic properties of C-codoped single walled BeO nanotubes (SWBeONTs) are systematically explored by using ab-initio density functional theory calculations. We performed our calculations for C codoping BeO nanotube in two different chiralities: (8,0) and (5,5). In each case, two different configurations are considered, first the two oxygen atoms replaced by two carbon atoms are on first nearest neighbor sites in the plane of codoping and second they are far from each other. We found when C atoms are at the nearest-neighboring positions; the antiferromagnetism (AFM) phase is stable while increasing the distance between the two C atoms, the ferromagnetism stability increases. In the AFM phase the structures are nonmagnetic semiconductors, but in the FM phase all these systems are half-metallic systems with high magnetic moment and 100% spin polarization which can be used as magnetic nanostructure and possible future applications in permanent magnetism, magnetic recording, and spintronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号