首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王朋  杜雪  回长顺 《光学学报》2015,(3):262-268
单点金刚石车削技术被广泛应用于光学表面的超精密加工。然而,车削表面固有的周期性残留刀痕结构将增强表面散射效应,恶化元件光学性能。为了抑制散射以获得高质量光学表面,采用气囊抛光技术主动改变车削表面周期性刀痕结构。基于Taguchi正交试验,以表面粗糙度及功率谱密度的改善率为设计指标,分析获得了最优抛光参数。采用该最优参数对一精车表面进行了抛光试验,抛光后表面粗糙度Ra由3.81 nm降到1.42 nm,各空间频率功率谱密度大幅降低,同时表面的衍射条纹消失。试验结果验证了所采用的抛光及相应优化方法的有效性,具有重要的工程应用价值。  相似文献   

2.
铝合金表面的直接光学抛光实验   总被引:1,自引:0,他引:1       下载免费PDF全文
张艺  尹自强  尹国举 《应用光学》2014,35(4):675-680
单点金刚石车削铝合金表面具有较好的表面质量和精度,但车削纹路会产生散射现象,难以满足高品质光学系统要求。对铝合金表面进行直接光学抛光可以去掉表面产生的车削纹路,提高反射表面的光学性能,分析酸性条件下和碱性条件下的铝镜抛光原理,采用新型抛光盘与抛光液对单点金刚石车削后铝合金表面进行抛光实验。实验结果表明:通过合理控制工艺参数,能够消除铝合金表面残留的周期性车削刀纹,并且不会产生新的表面划痕,得到较好的铝镜光学表面质量,测得的铝镜表面粗糙度Ra=2.6 nm。  相似文献   

3.
利用功率谱密度(PSD)评价光学表面粗糙度具有传统评价手段(Ra)所不具备的优势。给出了功率谱密度的计算方法,以及抽样方向与一维PSD曲线的关系。在离子束抛光K9玻璃实验中引入PSD曲线,以评价抛光光学零件的光学表面粗糙度,结合PSD曲线与Ra值能够更全面的指导光学加工。  相似文献   

4.
单点金刚石车削技术虽然可以使铜反射镜获得较好的表面粗糙度,但同时也产生了车削刀纹,刀纹引起镜面光的散射现象,严重影响系统的光学性能。为研究去除铜反射镜车削刀纹的修抛工艺最佳参数,采用4因素4水平正交实验法,通过ZJP350平面精磨抛光机进行抛光工艺实验,以及Zygo Newview 8200白光干涉仪对铜反射镜的刀纹去除情况和表面粗糙度进行检测。结果表明:铜镜胶盘的方法会使铜镜表面产生划痕以及塌边现象,而阻尼布手工修抛法则可避免这些问题。实验得到了最佳修抛工艺参数,可使铜基反射镜表面刀纹去除,粗糙度平均值达到2.387nm,低于初始数据。证明该方法可在不破坏车削精度的前提下去除车削刀纹,对其他金属反射镜刀纹去除的研究具有参考意义。  相似文献   

5.
内渐进多焦点镜片的加工   总被引:4,自引:1,他引:3  
秦琳玲  余景池 《光学技术》2008,34(1):136-140
介绍了加工内渐进多焦点镜片的自由曲面数控机床的基本结构及工作原理,开展了机床的加工工艺实验,用以改善内渐进多焦点镜片的光学性能。实验结果表明,车削阶段影响表面粗糙度的两个主要因素是镜片材料和切削速度;得到了抛光效果良好的两个抛光参数:抛光时间是50s—100s,抛光气压是0.03 MPa—0.06 MPa;不同材料的镜片车削后表面粗糙度不同,抛光后表面粗糙度基本相同。  相似文献   

6.
王贵林 《应用光学》2017,38(2):159-164
超精密车削技术适于加工KDP(磷酸二氢钾)等频率转换类型的强光光学零件,但车削表面存在明显的加工纹理,导致抗激光损伤阈值降低。以加工表面误差幅值及其频谱分布为对象,分析了KDP光学零件超精密车削的加工特征和误差形态,采用功率谱密度(PSD)评价方法研究了工艺参数与误差频谱的内在关系,结果表明:不同进给速度及主轴转速将使螺旋形刀痕的间距发生变化,进而影响KDP表面误差的频率成分;切削深度虽然对误差频谱影响很小,但会改变PSD的幅值;当主轴转速高于500 r/min、进给速度小于2 mm/min、切削深度小于2 μm时能够加工出rms值优于20 nm的KDP面形。在此基础上,以典型KDP光学零件加工为例,通过超精密补偿车削方法将低频误差的PSD控制在300 nm2·mm以内,中高频误差的PSD控制到国家点火装置(NIF)标准线以下,满足强光系统的工作要求。  相似文献   

7.
高翔  李闯  坎金艳  薛常喜 《光学学报》2021,41(22):13-20
为了提高单点金刚石车削CaF2衍射光学元件(DOE)的表面质量和衍射效率,首先基于Beckman标量散射理论和有效面积法,建立了表面粗糙度误差和表面轮廓误差对衍射效率影响的数学模型.然后,结合CaF2的车削特性和DOE的结构特点,优化了CaF2 DOE的车削模型.同时,给出了不同工艺条件下半圆金刚石刀具的最佳车削位置和最优刀具半径,实现了对CaF2 DOE表面粗糙度的控制.最后,在该优化模型的指导下,获得了表面粗糙度为3.4 nm、阴影区域宽度为28.7μm的高表面质量的CaF2 DOE,验证了所提优化车削模型的可靠性.所提车削模型对提高包含CaF2 DOE折-衍混合光学系统的成像质量具有重要意义.  相似文献   

8.
离子束作用下的光学表面粗糙度演变研究   总被引:2,自引:1,他引:1       下载免费PDF全文
廖文林  戴一帆  周林  陈善勇 《应用光学》2010,31(6):1041-1045
 为了获得超光滑光学表面,介绍了离子束作用下改善表面粗糙度的抛光方法,并通过相关的实验进行了验证。光学材料是典型的硬脆材料,在加工过程中的表面粗糙度要经历复杂的演变过程。离子束加工作为光学镜面加工中的最后一道工序,如果在修正面形的同时,能够有效地改善表面粗糙度,那么离子束加工的性能就可以得到更好的延伸。分析了离子束作用下的粗糙度演变机理,在此基础上提出了倾斜入射抛光和牺牲层抛光技术2种改善表面粗糙度的方法,并使用原子力显微镜进行了测量。实验结果表明:以45°倾斜入射抛光熔石英样件,其粗糙度由初始的0.67nm RMS减小到0.38nm RMS;涂上牺牲层的材料表面粗糙度由0.81nm RMS减小到0.28nm RMS,倾斜入射抛光和牺牲层抛光技术能够有效地改善表面粗糙度。  相似文献   

9.
气囊抛光工艺参数的正交实验分析   总被引:2,自引:0,他引:2  
针对平面光学零件,以抛光去除率和表面粗糙度为考核指标,应用正交试验法分析了气囊抛光过程中的主要工艺参数,包括抛光工具气囊的压缩量、气囊转速、气囊内部充气压力、抛光液的浓度对抛光去除效率和表面粗糙度的影响规律。结合气囊抛光的抛光机理对其进行了分析,根据实验结果对工艺参数进行了优化,并进行了综合参数的气囊抛光加工实验,获得了超精密光滑的表面。  相似文献   

10.
针对球面光学零件,采用气囊抛光方法对其进行加工,以正交实验为实验方法,以球面光学零件材料去除率和表面粗糙度为目标,研究了5个主要影响因素(气囊压缩量、气囊转速、内部压力、抛光液浓度和工件曲率半径)对材料去除率和表面粗糙度的影响程度,并根据实验结果优选工艺参数,找出影响材料去除率和表面粗糙度的工艺参数优化组合。以去除率和表面粗糙度为目标工艺参数,在优选后的结果指导下,根据优选后的工艺参数,以控制表面粗糙度为目标,采用离散进动方式抛光球面光学零件,可获得超精密的光滑表面。  相似文献   

11.
空间反射镜基底材料碳化硅表面改性研究   总被引:5,自引:1,他引:4  
直接抛光后的SiC反射镜表面光学散射仍较大,无法满足高质量空间光学系统的心用需求.为此必须对SiC反射镜进行表而改性,以获得高质量的光学表面.目前国际上较为流行的足制备Si或SiC改性层进行表面改性.分别采用离子辅助电子束蒸发方法制备Si和SiC改性层进行改性,相关测试结果表明:Si改性层结构为立方相,改性后基底表面粗糙度(rms)降到0.620 nm,散射系数减小到1.52%;SiC改性层结构为非晶相,改性后基底表面粗糙度(rms)降到0.743 nm,散射系数减小到2.79%.两种改性层均与基底结合牢固,温度稳定性较高.从可靠性方面考虑,目前在国内第一种方法更适于实际工程应用.该工艺改性后SiC基底表面散射损耗大大降低,表面质量得到明显改善.镀Ag后表面反射率接近于抛光良好的微晶玻璃的水平,已能够满足高质量空间光学系统的应用需要.  相似文献   

12.
利用永磁流变抛光技术制造高精度光学元件是一项极具前景的超精密制造技术。对一台五轴联动磁流变数控抛光系统的结构特点、功能特色及关键部件的设计进行了阐述。在此基础上,结合装置开展基础试验,对磁流变抛光过程中的主要控制参量如抛光轮下压量、抛光轮速度等对材料去除特性的影响进行了研究。开展了磁流变抛光对提高工件(K9玻璃)表面粗糙度效果的抛光试验,结果证明该套系统具有良好的磁流变抛光特性,抛光23min后工件表面粗糙度降低到0 6739nm。  相似文献   

13.
针对磁流变抛光过程中抛光轨迹会引入迭代误差的问题,设计了步长和行距随光学表面梯度自适应变化的光栅线抛光轨迹。首先根据光学元件的表面误差分布,利用标准五点法获得面形各点的梯度值,再基于聚类离散思想将所有面形点根据梯度值大小进行了归类,从而得到轨迹步长和行距随面形误差变化的自适应轨迹。在自研的磁流变加工机床上进行了实验研究,将一块直径50mm的微晶玻璃,从峰谷值为65nm、均方根值为12nm收敛到峰谷值为21nm、均方根值为2.5nm,并且在加工后的表面功率谱密度曲线上没有出现明显的尖峰误差。实验结果表明,这种自适应轨迹能有效抑制中高频误差。  相似文献   

14.
张峰 《中国光学》2014,7(4):616-621
为实现纳米级面形精度光学平面镜的高效精密抛光,提出了一种由传统环带抛光技术和先进离子束抛光技术相结合的组合式加工方法。介绍了环带抛光技术和离子束抛光技术的原理,通过实验研究了离子束抛光的材料去除函数,并采用这种组合抛光方法对口径为150 mm的平面镜进行抛光,抛光后平面镜的面形误差和表面粗糙度分别达到1.217 nm RMS和0.506 nm RMS。实验结果表明,这种组合抛光技术适合纳米级面形精度光学平面镜的加工。  相似文献   

15.
王彤彤 《发光学报》2013,34(11):1489-1493
采用具有良好比刚度和热稳定性的碳化硅材料作为基底,使用全息-离子束刻蚀技术制作了光栅。碳化硅材料表面固有缺陷导致制作的光栅刻槽表面粗糙度高,槽底和槽顶粗糙度分别达到了29.6 nm和65.3 nm (Rq)。通过等离子辅助沉积技术在碳化硅表面镀制一层均匀的硅改性层,经过抛光可以获得无缺陷的超光滑表面。XRD测试表明制备的硅改性层为无定形结构。原子力显微镜的测试结果表明:经过抛光后,表面粗糙度为0.64 nm(Rq)。在此表面上制作的光栅刻槽表面粗糙度明显降低,槽底和槽顶粗糙度分别为2.96 nm和7.21 nm,相当于改性前的1/10和1/9。  相似文献   

16.
碳化硅表面硅改性层的磁介质辅助抛光   总被引:3,自引:1,他引:2  
张峰  邓伟杰 《光学学报》2012,32(11):1116001
为了实现碳化硅表面硅改性层的精密抛光,获得高质量光学表面,对磁介质辅助抛光技术进行研究。设计了适合碳化硅表面硅改性层抛光的磁介质辅助抛光工具,并对抛光工具的材料去除函数进行研究。针对材料去除函数的特性,对数控磁介质辅助抛光的驻留时间算法进行了研究。采用磁介质辅助抛光技术对碳化硅表面硅改性层平面样片进行了抛光实验。经过一次抛光迭代,碳化硅样片表面硅改性层的面形精度(均方根)由0.049λ收敛到0.015λ(λ=0.6328 μm),表面粗糙度从2 nm改善至0.64 nm。实验结果表明基于矩阵代数的驻留时间算法有效,磁介质辅助抛光适合碳化硅表面硅改性层加工。  相似文献   

17.
银薄膜对光学基底表面粗糙度及光散射的影响   总被引:1,自引:1,他引:0  
潘永强  吴振森  杭凌侠 《光子学报》2009,38(5):1197-1201
为了研究金属银薄膜与光学基底表面粗糙度和光散射的关系,提出了通过对光学薄膜矢量散射公式积分来获得界面粗糙度完全相关模型和完全非相关模型下其表面的总反射散射的方法.理论计算了光学基底上两种模型在不同厚度银膜下的总反射散射和双向反射分布函数.结果表明,当沉积在光学基底上的银薄膜的厚度大于80 nm后,两种模型下计算的银薄膜的表面总反射散射都等于基底的总积分散射,银薄膜能较好地复现出基底的粗糙度轮廓.实验研究表明为了复现基底的粗糙度,银薄膜的最佳厚度应在80~160 nm之间.  相似文献   

18.
为了研究金属银薄膜与光学基底表面粗糙度和光散射的关系,提出了通过对光学薄膜矢量散射公式积分来获得界面粗糙度完全相关模型和完全非相关模型下其表面的总反射散射的方法.理论计算了光学基底上两种模型在不同厚度银膜下的总反射散射和双向反射分布函数.结果表明,当沉积在光学基底上的银薄膜的厚度大于80nm后.两种模型下计算的银薄膜的表面总反射散射都等于基底的总积分散射,银薄膜能较好地复现出基底的粗糙度轮廓.实验研究表明为了复现基底的粗糙度,银薄膜的最佳厚度应在80~160nm之间.  相似文献   

19.
受空间所限,激光通信地面测试平台与被测终端之间的距离远小于实际通信距离,导致测试平台光机等器件产生的后向散射杂光进入被测终端,从而严重影响被测终端的测试性能。从被测终端与测试平台间的光学干扰问题出发,本文研究了被测终端与测试平台间隔离度的关系,分别设计了卡塞格林和离轴三反光学天线,并根据杂散光传输模型,采用杂散光分析软件分析了光学天线结构形式及表面粗糙度两方面对隔离度的影响。分析结果表明,采用离轴三反光学天线时的隔离度明显高于卡塞格林光学天线,且隔离度随着光学表面粗糙度的减小而增大,当光学表面的粗糙度达到0.892 nm时,隔离度可达-86.22 dB。最后,推导了ABg模型与Harvey模型参数间的关系,并根据粗糙度与TIS计算公式,得出粗糙度分别为0.7 nm及0.5 nm的ABg模型参数,它们的终端间隔离度分别为-94.39 dB和-97.3 dB,实现了-90 dB的隔离度指标。  相似文献   

20.
为了研究离子束刻蚀抛光过程中离子源工艺参数对刻蚀速率及表面粗糙度的影响,采用微波离子源为刻蚀离子源,以BCB胶为主要研究对象,研究了离子束能量、离子束电流、氩气流量、氧气流量对BCB胶刻蚀速率及表面粗糙度的影响,获得了离子源工艺参数与刻蚀速率及表面粗糙度演变的关系。研究结果表明,离子束能量在从400 eV增大到800 eV的过程中,刻蚀速率不断增大,从3.2 nm/min增大到16.6 nm/min;离子束流密度在从15 mA增大到35 mA的过程中,刻蚀速率不断增大,从1.1 nm/min增大到2.2 nm/min;工作气体中氧气流量从2 mL/min增大到10 mL/min的过程中,刻蚀速率会整体增大,在8 mL/min处略有下降。表面粗糙度变化不大,可以控制在1.8 nm以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号