首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
We discuss the excess conductivity at nonzero frequencies in a superconductor above Tc within the Gaussian approximation. We focus the attention on the temperature range not too close to Tc: within a time-dependent Ginzburg-Landau formulation, we phenomenologically introduce a short wavelength cutoff (of the order of the inverse coherence length) in the fluctuational spectrum to suppress high momentum modes. We treat the general cases of thin wires, anisotropic thin films and anisotropic bulk samples. We obtain in all cases explicit expressions for the finite frequency fluctuational conductivity. The dc case directly follows. Close to Tc the cutoff has no effect, and the known results for Gaussian fluctuations are recovered. Above Tc, and already for ε = ln(T/T c) > 10-2, we find strong suppression of the paraconductivity as compared to the Gaussian prediction, in particular in the real part of the paraconductivity. At high ε the cutoff effects are dominant. We discuss our results in comparison with data on high-Tc superconductors. Received 19 March 2002 Published online 25 June 2002  相似文献   

3.
We propose a Ginzburg-Landau phenomenological model for the dependence of the critical temperature on microscopic strain in tetragonal high-T c cuprates. Such a model is in agreement with the experimental results for LSCO under epitaxial strain, as well as with the hydrostatic pressure dependence of T c in most cuprates. In particular, a nonmonotonic dependence of T c on hydrostatic pressure, as well as on in-plane or apical microstrain, is derived. From a microscopic point of view, such results can be understood as due to the proximity to an electronic topological transition (ETT). In the case of LSCO, we argue that such an ETT can be driven by a strain-induced modification of the band structure, at constant hole content, at variance with a doping-induced ETT, as is usually assumed. Received 1st October 2001 and Received in final form 5 December 2001  相似文献   

4.
The anisotropy of MgB2 is still under debate: its value, strongly dependent on the kind of sample and on the measuring method, ranges between 1.2 and 13. In this work we present our results on MgB2 c-oriented superconducting thin film. To evaluate the anisotropy, we followed two different approaches. Firstly, magnetoresistivity was measured as a function of temperature at selected magnetic fields applied both parallel and perpendicular to the c-axis; secondly, we measured magnetoresistivity at selected temperatures and magnetic fields, varying the angle θ between the magnetic field and the c-axis. The anisotropy estimated from the ratio between the upper critical fields parallel and perpendicular to the c-axis and the one obtained in the framework of the scaling approach within the anisotropic Ginzburg-Landau theory are different but show a similar trend in the temperature dependence. Some differences in the upper critical field and in its anisotropy of our film with respect to single crystals are emphasized: some of these aspects can be accounted for by an analysis of upper critical fields within a two-band model in presence of disorder and/or crystallographic strain. Received 12 July 2002 / Received in final form 17 September 2002 Published online 29 November 2002  相似文献   

5.
Superconductors put into rotation develope a spontaneous internal magnetic field (the “London field”). In this paper Ginzburg Landau equations for order parameter, field, and current distributions for superconductors in rotation are derived. Two simple examples are discussed: the massive cylinder and the “Little and Parks geometry”: a thin film of superconducting material deposited on a cylinder of normal material. A dependence of T c on rotational frequency is predicted. The magnitude of the effect is estimated and should be observable. Received 28 May 2001  相似文献   

6.
We study the statistical properties of the sum S t = dt'σ t', that is the difference of time spent positive or negative by the spin σ t, located at a given site of a D-dimensional Ising model evolving under Glauber dynamics from a random initial configuration. We investigate the distribution of St and the first-passage statistics (persistence) of this quantity. We discuss successively the three regimes of high temperature ( T > T c), criticality ( T = T c), and low temperature ( T < T c). We discuss in particular the question of the temperature dependence of the persistence exponent , as well as that of the spectrum of exponents (x), in the low temperature phase. The probability that the temporal mean S t/t was always larger than the equilibrium magnetization is found to decay as t - - ?. This yields a numerical determination of the persistence exponent in the whole low temperature phase, in two dimensions, and above the roughening transition, in the low-temperature phase of the three-dimensional Ising model. Received 4 December 2000  相似文献   

7.
Measurements of the thermal conductivity (kxx) and the thermal Hall effect (kxy) in high magnetic fields in Y- and Bi-based high-T c superconductors are presented. We describe the experimental technique and test measurements on a simple metal (niobium). In the high-T c superconductors kxx and kxy increase below T c and show a maximum in their temperature dependence. kxx has contributions from phonons and quasiparticle (QP) excitations, whereas kxy is purely electronic. The strong increase of kxy below T c gives direct evidence for a strong enhancement of the QP contribution to the heat current and thus for a strong increase of the QP mean free path. Using kxy and the magnetic field dependence of kxx we separate the electronic thermal conductivity ( k xx el ) of the CuO 2 -planes from the phononic thermal conductivity ( k xx ph ). In YBa2Cu3O 7 - δ k xx el shows a pronounced maximum in the superconducting state. This maximum is much weaker in Bi2Sr2CaCu2O 8 + δ , due to stronger impurity scattering. The maximum of k xx el is strongly suppressed by a magnetic field, which we attribute to the scattering of QPs on vortices. An additional magnetic field independent contribution to the maximum of kxx occurs in YBa2Cu3O 7 - δ , reminiscent of the contribution of the CuO-chains, as determined from the anisotropy in untwined single crystals. Our data analysis reveals that below T c as in the normal state a transport (τ) and a Hall ( ) relaxation time must be distinguished: The inelastic (i.e. temperature dependent) contribution to τ is strongly enhanced in the superconducting state, whereas displays the same temperature dependence as above T c . We determine also the electronic thermal conductivity in the normal state from kxy and the electrical Hall angle. It shows an unusual linear increase with temperature. Received 23 August 2000  相似文献   

8.
Neutron powder diffraction was employed to study the pressure effect on the magnetic transition in the pseudobinary Laves-phase compound Er0.57Y0.43Co2 and to determine the magnetic moments of the Er- and Co-subsystems. Our studies reveal that the onset of long-range magnetic order for both the localized 4 f (Er) and itinerant 3 d (Co) electron moments appears at about the same temperature at ambient pressure. The pressure effect on Tc is found to be negative and equal for both sublattices, namely T c / p ∼ - 0.4 K/kbar. The values of the magnetic moments of the Er and the Co ions are found = 5.40±0.15μ B /atom, = 0.50±0.07μ B /atom and 5.35±0.15μ B /atom, 0.37±0.09μ B /atom, for p = 0 and 6 kbar, respectively. Our experimental results give evidence for short-range magnetic order formation at temperatures already above Tc and for a coexistence short- and long-range order below Tc down to 4 K. Received 20 December 2001 / Received in final form 12 June 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: andrew.podlesnyak@psi.ch  相似文献   

9.
Theoretical and experimental magnetizations of lead nanowire arrays well below the superconducting transition temperature Tc are described. The magnetic response of the array was investigated with a SQUID magnetometer. Hysteretic behaviour and phase transitions have been observed in sweeping up and down the external magnetic field at different temperatures. The Meissner and Abrikosov states were also experimentally observed in this apparently type-I superconductor. This fact brings to the fore the non-trivial behaviour of the critical boundary κ c ( = 1/ in bulk materials) between type-I and type-II phase transitions at mesoscopic scales. The time-independent Ginzburg-Landau equations particularized to cylindrically symmetric configurations enable one to explain and reproduce the experimental magnetization curves within 10% of error. Received 16 January 2003 / Received in final form 27 March 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: stenuit@fynu.ucl.ac.be  相似文献   

10.
We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2BaNi1-xZnxO5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ( T ) ∼ C /(Θ + T ) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the “impurity” susceptibility ( T ) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by T ( T ) = C imp 1 + T imp / T . In the temperature range [100 mK, 1 K] the experimental data are well fitted by T ( T ) = A ln( T / T c ), where T c increases with x. This fit suggests the existence of a finite Néel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility ( T ) which suggests the existence of antiferromagnetic correlations at very low temperature. Received 17 July 2001  相似文献   

11.
The dynamic and static properties of a supercooled (non-entangled) polymer melt are investigated via molecular-dynamics (MD) simulations. The system is confined between two completely smooth and purely repulsive walls. The wall-to-wall separation (film thickness), D, is varied from about 3 to about 14 times the bulk radius of gyration. Despite the geometric confinement, the supercooled films exhibit many qualitative features which were also observed in the bulk and could be analyzed in terms of mode-coupling theory (MCT). Examples are the two-step relaxation of the incoherent intermediate scattering function, the time-temperature superposition property of the late time α-process and the space-time factorization of the scattering function on the intermediate time scale of the MCT β-process. An analysis of the temperature dependence of the α-relaxation time suggests that the critical temperature, T c, of MCT decreases with D. If the confinement is not too strong ( D≥10monomer diameter), the static structure factor of the film coincides with that of the bulk when compared for the same distance, T - T c(D), to the critical temperature. This suggests that T - T c(D) is an important temperature scale of our model both in the bulk and in the films. Received 12 September 2001  相似文献   

12.
We report results obtained with two different experimental set-ups in state-of-the-art YBCO thin films as similar as possible, prepared by pulsed laser deposition on LaAlO3 substrates: a surface impedance measurement on 4000 ? thick films using a parallel plate resonator (10 GHz), and a far infrared transmission (100-400 GHz) measurement which requires thinner (1000 ?) samples. The former measurement yields the temperature variation of the penetration depth λ(T) and the real part of the conductivity, provided the absolute value of λ(T) is known. The latter yields the imaginary part of the conductivity, hence the absolute value of the penetration depth, as well as its temperature dependence at the measuring frequency. Combining these two experiments, we establish a quasi-linear temperature variation of λ(T), with a 2 ? K-1 low temperature slope, and a fairly large zero temperature value λ(T = 0)=(1800±200) ? . The scattering rate of the quasi-particles calculated from a two-fluids model shows that the films compare to good quality single crystals, where twice a larger slope has been found. This surprising behavior is described in detail, including an in-depth structural analysis of the samples in order to evaluate their similarities. We find that the 10 GHz data obtained in the thickest films can be fitted to the dirty d-wave mode in the unitarity limit, with an extrapolated slope of 3 ? K-1, but yield a scattering rate that is difficult to reconcile with the high T c (92 K) of the films. Received 7 May 2001 and Received in final form 18 October 2001  相似文献   

13.
Low frequency transport measurements are performed on GdSr2RuCu2O8 pellets. The observed current-voltage curves are qualitatively explained in the framework of a simple phenomenological model accounting for coexistence in the sample of ferromagnetism and superconductivity. A Curie temperature T cM = 133 K and a superconducting critical temperature T cS = 18 K, with an onset temperature T cO = 33 K, are extracted from the analysis of the current-voltage curves. Received 18 September 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: canio@sa.infn.it  相似文献   

14.
The use of parameters measuring order-parameter fluctuations (OPF) has been encouraged by the recent results reported in referenece [2,3] which show that two of these parameters, G and G c, take universal values in the . In this paper we present a detailed study of parameters measuring OPF for two mean-field models with and without time-reversal symmetry which exhibit different patterns of replica symmetry breaking below the transition: the Sherrington-Kirkpatrick model with and without a field and the Ising p-spin glass (p = 3). We give numerical results and analyze the consequences which replica equivalence imposes on these models in the infinite volume limit. We give evidence for the transition in each system and discuss the character of finite-size effects. Furthermore, a comparative study between this new family of parameters and the usual Binder cumulant analysis shows what kind of new information can be extracted from the finite T behavior of these quantities. The two main outcomes of this work are: 1) Parameters measuring OPF give better estimates than the Binder cumulant for T c and even for very small systems they give evidence for the transition. 2) For systems with no time-reversal symmetry, parameters defined in terms of connected quantities are the proper ones to look at. Received 20 September 2000 and Received in final form 10 January 2001  相似文献   

15.
We report measurements of the resistivity, ρ, and the Seebeck coefficient, S , of a MgB2 sintered sample, and compare S with theoretical calculations based on precise electronic structure calculations. ρ is fitted well by a generalized Bloch-Grüneisen equation with a Debye temperature Θ R of 1050 K. S is given by the sum of a diffusive and a phonon drag term and the behavior in the temperature region T c < T < 0.1Θ R follows the relationship AT+BT3. The phonon drag term indicates a strong electron-phonon interaction. The diffusive term, compared with calculations, suggests that σ bands give the main contribution to the Seebeck effect. Received 16 November 2001 and Received in final form 21 December 2001  相似文献   

16.
We report complex impedance measurements in an untwinned YBaCuO crystal. Our broad frequency range covers both the quasi static response and the resistive response of the vortex lattice. It allow us to characterize the irreversibility line without the need of any frequency dependent pinning parameters. We confirm the validity of the two modes model of vortex dynamic, and extract both the surface critical current and the flux flow resistivity around the first order transition Tm. This latter is identified by the abrupt loss of pinning and by an unexpected step of (T) at Tm. Received 22 November 2002 / Received in final form 17 February 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: alain.pautrat@ismra.fr RID="b" ID="b"UMR 6508 associée au CNRS  相似文献   

17.
A neutron diffraction study, as a function of temperature, of the title compounds is presented. The whole family (space group Immm, a ≈ 3.8?, b ≈ 5.8?, c ≈ 11.3?) is structurally characterised by the presence of flattened NiO6 octahedra that form chains along the a-axis, giving rise to a strong Ni-O-Ni antiferromagnetic interaction. Whereas for Y-compound only strong 1D correlations exist above 1.5 K, presenting the Haldane gap characteristic of 1D AF chain with integer spin, 3D AF ordering is established simultaneously for both R and Ni sublattices at temperatures depending on the rare earth size and magnetic moment. The magnetic structures of R2BaNiO5 ( R = Nd, Tb, Dy, Ho, Er and Tm) have been determined and refined as a function of temperature. The whole family orders with a magnetic structure characterised by the temperature-independent propagation vector = (1/2, 0, 1/2). At 1.5 K the directions of the magnetic moments differ because of the different anisotropy of the rare earth ions. Except for Tm and Yb (which does not order above 1.5 K), the magnetic moment of the R3+ cations are close to the free-ion value. The magnetic moment of Ni2+ is around 1.4 , the strong reduction with respect to the free-ion value is probably due to a combination of low-dimensional quantum effects and covalency. The thermal evolution of the magnetic structures from T N down to 1.5 K is studied in detail. A smooth re-orientation, governed by the magnetic anisotropy of R3+, seems to occur below and very close to T N in some of these compounds: the Ni moment rotates from nearly parallel to the a-axis toward the c-axis following the R moments. We demonstrate that for setting up the 3D magnetic ordering the R-R exchange interactions cannot be neglected. Received 19 July 2001  相似文献   

18.
The phase diagram of the organic superconductor (TMTSF)2PF6has been revisited using transport measurements with an improved control of the applied pressure. We have found a 0.8 kbar wide pressure domain below the critical point (9.43 kbar, 1.2 K) for the stabilisation of the superconducting ground state featuring a coexistence regime between spin density wave (SDW) and superconductivity (SC). The inhomogeneous character of the said pressure domain is supported by the analysis of the resistivity between T SDW and T SC and the superconducting critical current. The onset temperature T SC is practically constant ( 1.20±0.01 K) in this region where only the SC/SDW domain proportion below T SC is increasing under pressure. An homogeneous superconducting state is recovered above the critical pressure with T SC falling at increasing pressure. We propose a model comparing the free energy of a phase exhibiting a segregation between SDW and SC domains and the free energy of homogeneous phases which explains fairly well our experimental findings. Received 3 September 2001 and Received in final form 9 November 2001  相似文献   

19.
Thermodynamic quantities and correlation functions (CFs) of the classical antiferromagnet on the checkerboard lattice are studied for the exactly solvable infinite-component spin-vector model, D↦∞. In contrast to conventional two-dimensional magnets with continuous symmetry showing extended short-range order at distances smaller than the correlation length, r ξ c∝ exp(T */T), correlations in the checkerboard-lattice model decay already at the scale of the lattice spacing due to the strong degeneracy of the ground state characterized by a macroscopic number of strongly fluctuating local degrees of freedom. At low temperatures, spin CFs decay as < >∝ 1/r 2 in the range a 0r≪ξ cT -1/2, where a0 is the lattice spacing. Analytical results for the principal thermodynamic quantities in our model are very similar with MC simulations, exact and analytical results for the classical Heisenberg model (D = 3) on the pyrochlore lattice. This shows that the ground state of the infinite-component spin vector model on the checkerboard lattice is a classical spin liquid. Received 16 November 2001 and Received in final form 12 February 2002  相似文献   

20.
A polarised neutron scattering investigation has been carried out on a powder sample of CuGeO3 within the temperature range of 1.5 K to 600 K. The magnetic scattering has been separated from all other contributions by using polarised neutrons and polarisation analysis and placed onto an absolute scale. At low temperatures the long wavelength components of the paramagnetic response are suppressed consistent with the formation of Cu dimers in which the magnetic moments are correlated antiferromagnetically. This form of the scattering persists to temperatures well above the dimerisation temperature T sp ∼ 14 K. However as the temperature is raised the intensity of the long wavelength spin fluctuations increases and above 150 K they are the dominant feature in the wave vector dependence of the response. At all temperatures the observed scattering extrapolates smoothly to the Q = 0 value given by the uniform susceptibility. Consequently the thermal variation of the uniform susceptibility arises from the evolution of the long wavelength magnetic fluctuations. At large wave vectors the energy dependence of the scattering revealed that the response occurs below 16 meV in agreement with the reported maximum magnetic excitation energy at the zone boundary in the ground state. However the total magnetic scattering is significantly less than that expected for a local moment system suggesting that the spectrum of thermal and quantum fluctuations overlap. Received 30 May 2000 and Received in final form 22 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号