首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
激光激发超声波的新方法研究   总被引:1,自引:4,他引:1  
介绍了激光激发超声波的原理,分别给出了热弹机制和烧蚀机制下的纵波和剪切波理论波形;基于排列因子作用,提出了一种新型激光激发超声波的方法——激光定相位排列激发超声波,激光源经过定相位排列后,在某一方向上产生的超声波幅度比传统单一源产生的超声波幅度要强很多,采用此种方法,可实现对超声信号方向和强度的有效激发控制,对下一步的超声无损检测有非常重要的意义;结合实际给出了该方法的实现方式.  相似文献   

2.
Mass spring lattice modeling of the scanning laser source technique   总被引:9,自引:0,他引:9  
Sohn Y  Krishnaswamy S 《Ultrasonics》2002,39(8):543-551
The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content have been observed for ultrasound generated by the laser over uniform and defective areas. In this paper, the SLS technique is simulated numerically using the mass spring lattice model. Thermoelastic laser generation of ultrasound in an elastic material is modeled using a shear dipole distribution. The spatial and temporal energy distribution profiles of typical pulsed laser sources are used to model the laser source. The amplitude and spectral variations in the laser generated ultrasound as the SLS scans over a large aluminum block containing a small surface-breaking crack are observed. The experimentally observed SLS amplitude and spectral signatures are shown to be captured very well by the model. In addition, the possibility of utilizing the SLS technique to size surface-breaking cracks that are sub-wavelength in depth is explored.  相似文献   

3.
Most of the factors limiting the extensive application of laser-based ultrasonic for nondestructive evaluation of surface breaking crack are its poor sensitivity, low efficiency relative to conventional contact ultrasonic methods and limit on the dimension of the cracks. For this reason, a new technique that multiplepulse narrow-band ultrasound generated by laser arrays has been proposed. It is found that crack detection dependent on spectrum of narrow-band ultrasound generated by laser arrays can be operated with low amplitude requirements. In this paper, the narrow-band ultrasound generated by pulse laser arrays interacting with surface breaking cracks has been simulated in detail by the finite element method (FEM) according to the thermoelastic theory. The pulsed array lasers were assumed to be transient heat source, and the surface acoustic wave (SAW) which propagating on the top of the plate was computed based on thermoelastic theory. Then the frequency spectrums of both reflected waves by crack and transmission ones through crack were compared with the direct waves. Results demonstrate that multiple-frequency components of the narrow-band ultrasound were varied with change of the depth of surface breaking cracks significantly, which provides the possibility for precise evaluation of surface breaking cracks.  相似文献   

4.
王冲  毛捷  廉国选 《应用声学》2018,37(5):732-737
超声全聚焦成像中,声波的传播受到阵元指向性的影响,位于阵元不同方位的缺陷成像幅度不同。缺陷相对阵列中心偏角越大,回波幅度越低,容易造成漏检。为提高超声全聚焦算法对固体中大偏角缺陷的成像能力,该文引入了矩形阵元固体指向性函数,建立了基于固体指向性补偿的超声全聚焦优化算法,利用指向性系数对不同角度区域的成像进行幅值补偿。实验结果表明,相对于基本超声全聚焦和传统指向性补偿的超声全聚焦算法,该文固体指向性优化算法对大偏角缺陷的成像幅度补偿效果更好,检测灵敏度更高,有效避免了缺陷漏检,扩展了超声全聚焦算法检测范围。  相似文献   

5.
由于良好的声束偏转与聚焦特性,超声相控阵已经广泛应用于多层固体介质的缺陷检测。当超声束经过多层介质时,由于反射、透射以及模式转换的存在,多种声束存在于这种结构中,使得声场分析变得复杂。为了提高多层介质检测的准确性,有必要对超声声场的分布规律进行深入地了解。该文结合高斯声束等效点源模型以及射线追踪法,给出了相控阵声源在多层固体介质中激发声场的仿真方法,并且模拟计算了一维线型相控阵在楔块-铝-黄铜-钢四层固体介质中的辐射声场。通过对不同延时法则的计算,实现了声波在这种复杂介质中的偏转与聚焦,进而研究了不同焦点处聚焦声场的分布。结果表明:相控阵方法能使聚焦点处的声场幅值增大,能量集中,提高了检测分辨率;不同聚焦点处声场聚焦效果不同,实际检测时应根据检测区域结构及位置特点,合理放置相控阵换能器。与瑞利积分法的比较表明,该文的仿真方法适用于多层介质相控阵声场的计算。  相似文献   

6.
An aluminium hemicylindrical sample has been irradiated with an array of laser lines, with each line acting as a source of acoustic waves. Detection of the generated ultrasonic waves was performed using both a wide-band stabilized Michelson interferometer and a 20 MHz piezoelectric transducer. Experimental and theoretical results are presented which reveal that the use of a spatially modulated laser source produces significant narrow-banding of the detected ultrasound, compared with a single point or single line source case. Additionally, for a given line spacing, ultrasound of a particular frequency can be directed. Owing to the nature of the acoustic signals generated by each individual array element, superposition of several signals does not result in any energy directivity similar to that encountered in phase electromagnetic array antennas. While time or frequency feature enhancement may be obtained in a desired direction, in most cases the far field energy directivity pattern is simply the incoherent sum of the energy directivity of each array element.  相似文献   

7.
This paper describes a novel method for on-line real-time data reduction of radiofrequency (RF) ultrasound signals. The approach is based on a field programmable gate array (FPGA) system intended mainly for steel thickness measurements. Ultrasound data reduction is desirable when: (1) direct measurements performed by an operator are not accessible; (2) it is required to store a considerable amount of data; (3) the application requires measuring at very high speeds; and (4) the physical space for the embedded hardware is limited. All the aforementioned scenarios can be present in applications such as pipeline inspection where data reduction is traditionally performed on-line using pipeline inspection gauges (PIG). The method proposed in this work consists of identifying and storing in real-time only the time of occurrence (TOO) and the maximum amplitude of each echo present in a given RF ultrasound signal. The method is tested with a dedicated immersion system where a significant data reduction with an average of 96.5% is achieved.  相似文献   

8.
Laser generated ultrasound holds substantial promise for use as a tool for defect detection in remote inspection thanks to its ability to produce frequencies in the MHz range, enabling fine spatial resolution of defects. Despite the potential impact of laser generated ultrasound in many areas of science and industry, robust tools for studying the phenomenon are lacking and thus limit the design and optimization of non-destructive testing and evaluation techniques. The laser generated ultrasound propagation in complex structures is an intricate phenomenon and is extremely hard to analyze. Only simple geometries can be studied analytically. Numerical techniques found in the literature have proved to be limited in their applicability, by the frequencies in the MHz range and very short wavelengths. The objective of this research is to prove that by using an explicit integration rule together with diagonal element mass matrices, instead of the almost universally adopted implicit integration rule to integrate the equations of motion in a dynamic analysis, it is possible to efficiently and accurately solve ultrasound wave propagation problems with frequencies in the MHz range travelling in relatively large bodies. Presented results on NDE testing of rails demonstrate that the proposed FE technique can provide a valuable tool for studying the laser generated ultrasound propagation. PACS 02.70.Dh; 43.35.+d; 42.62.-b  相似文献   

9.
An antenna array placed in an arctic-type acoustic waveguide is considered. The guided sound field consists of a signal generated by a point source and an isotropic interfering noise produced by the ice cover. The array is operated in a specific regime: the output signals correspond to individual modes of the sound field. The signal received by the array is subjected to correlation processing with a finite averaging time. It is shown that, depending on the processing method, the signal-to-noise ratio can reach 40–60 dB for a realization duration of 1 min, and the quality of the signal detection is increased.  相似文献   

10.
Mahaut S  Roy O  Beroni C  Rotter B 《Ultrasonics》2002,40(1-8):165-169
Ultrasonic inspection of complex geometry components has to cope with different problems: limited access of the area assumed to be insonified, beam misorientation and distortions, loss of sensitivity. Those harmful effects can lead to inspection performance degradations, especially in terms of defect detection and characterization. Phased array techniques may be used to overcome such difficulties, as they can provide an optimal mastering of the ultrasonic beam radiated through the inspected component. This paper presents some applications of phased array inspections carried out by the French Atomic Energy Commission (CEA) and the French Company of Electricity (EDF) in the framework of R&D studies. Inspections of components with varying profile (of planar and cylindrical parts, misalignment and local depression), and containing artificial reflectors have been carried out with pulse echo immersion techniques, using standard and phased arrays transducers. Optimal delay laws have been applied to preserve the beam characteristics in spite of the varying profile geometry encountered as the phased array transducer was moved over the component. Those delay laws allow to efficiently compensate the beam distortions generated by the profile geometry. They were computed using a specific model and compared to experimental delays obtained using through transmission tests. Experimental and simulation results showed that the defect detection and characterization performances were greatly enhanced using phased array techniques. In the presented examples, with standard transducers, defects located below the irregular parts of the specimen were partially detected, in accurately located or even missed, whereas phased array inspections enabled to detect and locate all of these defects.  相似文献   

11.
《Physics letters. A》1999,251(5):303-310
Bubble formation and bubble collapse zones in a laser-induced nonlinear Rayleigh-Taylor (R-T) instability were shown to follow the contours of a series of R-T shock-fronts generated on an irregular planar (terrace-like) target surface. Bubble formation occurs in the regime of target planar vaporization. Spatial variation of the bubble density distribution, the bubble size, and the bubble-bubble distance, as a function of distance from the shock front envelope, were determined. Bubble collapse occurs in the regime of planar-to-volume boiling transition and proceeds by the so-called “chain reaction” collapse mechanism inside a 2D bubble array. The contours of bubble generation and of bubble collapse were simulated by using the analytical model of Ott with variable phase and variable amplitude of R-T modes.  相似文献   

12.
We analyze the spatial spectra of a vector-scalar array when the signals are processed using methods with different resolution. The method of presenting the signals used in the research allowed us to apply the previously developed method of detecting and estimating the parameters of signal sources obtained in the calculation of the theoretical characteristics of detecting the signal sources and realization of the algorithms of signal processing. We compared the resolution of vector-scalar and scalar arrays with the same aperture. The experiments were carried out in stationary conditions and in the towing regime. During the towing regime, the accuracy of determination of the source location was controlled using the GPS receivers. It was shown experimentally that the signal to noise ratio at the output of the receiving array is three times greater if the vector-scalar array is used rather than the scalar one. The level of the lateral background appeared to be three times smaller during operation with the vector-scalar array than with the scalar one even in the towing regime. The results of measurements are confirmed by theoretical calculations.  相似文献   

13.
Surface-bonded fiber optic Sagnac sensors for ultrasound detection   总被引:3,自引:0,他引:3  
Jang TS  Lee SS  Kim YG 《Ultrasonics》2004,42(1-9):837-841
This paper describes a fiber optic sensor suitable for remote sensing and multi-point detection of ultrasound. This ultrasound sensor is based on the surface-bonded fiber optic Sagnac interferometer with the output fringe visibility of 1; it consists of a laser source, an ordinary single mode fiber delay line, a fiber coupler, a phase modulator and polarization controllers. For the validation of the sensor, surface acoustic waves and Lamb waves are excited by illuminating a steel specimen with an array of Q-switched Nd:YAG laser-generated line sources and the measurement of laser-generated ultrasonic waves are performed on the specimen surface using the surface-mounting fiber optic Sagnac sensor. The surface-bonded fiber optic sensor developed in this study has a simple configuration for detection of ultrasonic waves. Effectiveness of surface-bonded fiber optic Sagnac sensors for remote sensing of ultrasound and in situ monitoring of structures is investigated. The capability of multi-point detection of ultrasound by this Sagnac sensor is also discussed.  相似文献   

14.
In Lamb waves inspection, an air-coupled transmitter transducer is oriented at a specific angle such that it generates a pure Lamb mode which propagates along the structure and interacts with any existing defects. For this inspection system, amplitude losses appears when small inclinations of the tested structure occurs. An important factor which affects directly these losses has been observed, it consists of the Lamb waves beam (LWB) deviation due to this bad alignment. In this work, a simple expression of LWB deviation has been deduced. This expression includes the test structure angle, phase velocity of generated Lamb mode, and the phase velocity of waves propagating in the coupled medium. A(0) Lamb mode is generated and detected in 1 mm thick aluminium plate sample using 1 MHz PZ27 piezoelectric transducers of 20 mm of diameter. Experimental LWB deviation angles are measured for different inclination angles of the test sample. A comparative study is released with theoretical results. For 1 degree of misalignment in the aluminium plate inclination, and transducers separation distance of 35 mm, LWB deviation angle is around 7 degrees and the amplitude is reduced by around 11%. Then, for a large separation distance, we must move the receiver transducer to detect the deviated LWB. It is shown that, for both theoretical and experimental studies, the LWB deviation and its measured amplitude are very sensitive to the alignment of the tested structure with respect to the transmitter-receiver transducers plane. In metal plates it is most satisfactory to use A(0) mode compared with S(0) mode since it is easy to excite and has a large amplitude and small deviation beam angles.  相似文献   

15.
A method for estimating waveform aberration from random scatterers in medical ultrasound imaging has been derived and its properties investigated using two-dimensional simulations. The method uses a weighted and modified cross-spectrum in order to estimate arrival time and amplitude fluctuations from received signals. The arrival time and amplitude fluctuations were used in a time delay, and a time delay and amplitude aberration correction filter, for evaluation of the retransmitted aberration corrected signal. Different types of aberration have been used in this study. First, aberration was concentrated on the plane of the transmitting/receiving array. Second, aberration was generated with a distributed aberrator. Both conditions emulated aberration from the human abdominal wall. Results show that for the concentrated aberrator, arrival time and amplitude fluctuations were estimated in close agreement with reference values. The reference values were obtained from simulations with a point source in the focal point of the array. Correction of the transmitted signal with a time delay, and a time delay and amplitude filter produced approximately equal correction as with point source estimates. For the distributed aberrator, the estimator performance degraded significantly. Arrival time and amplitude fluctuations deviated from reference values, leading to a limited correction of the retransmitted signal.  相似文献   

16.
Micó V  García J 《Optics letters》2010,35(23):3919-3921
We present an approach capable of high-NA imaging in a lensless digital in-line holographic microscopy layout even outside the Gabor's regime. The method is based on spatial multiplexing at the sample plane, allowing a common-path interferometric architecture, where two interferometric beams are generated by a spatial light modulator (SLM) prior to illuminating the sample. The SLM allows phase-shifting interferometry by phase modulation of the SLM diffracted beam. After proper digital processing, the complex amplitude distribution of the diffracted object wavefront is recovered and numerically propagated to image the sample. Experimental results are reported that validate the proposed method.  相似文献   

17.
A study is conducted on minimizing the sum of the squared acoustic pressures with a linear array of control sources and a perpendicular linear array of error sensors, placed above the top of a noise barrier. Particular angular orientations, with respect to the center of the barrier top, and spacings of the linear arrays of control sources and error sensors result in moderate to significant additional reduction of the acoustic pressure in the shadow zone. Visual inspection of the sound pressure field, with and without active noise control, found that uniform and significant additional insertion loss can be generated near the barrier. Numerical simulations were conducted to test the proposed method. For separations between control sources and error sensors much less than a quarter wavelength of the primary noise disturbance, results show that the angular orientation, of the combined linear control source and sensor arrays, is a weak factor for acoustic pressure reduction in the shadow zone. Weak angle dependence serves as an advantage to the proposed method, which yields uniform performance for any angular orientation. An angular orientation involving the alignment of the furthest error sensor with the first diffracting edge of the barrier and the primary source was observed to perform well for a variety of frequencies, since the spacing between error sensors and between control sources is of the order of a quarter-wavelength. Improved noise control in the shadow zone of a barrier is achieved by the use of two control sources and angular orientation as mentioned above. Further spatial extension of the area of reduced acoustic pressure is possible by utilizing an increased number of control sources.  相似文献   

18.
本文主要利用超声相控阵技术进行了裂纹方向识别研究。首先,对线性超声相控阵探头采集的全矩阵数据进行了全聚焦成像,确定缺陷的位置。然后将线性阵列划分为若干子阵列,研究了缺陷位置处子阵列的散射系数分布,从中提取出缺陷的方向信息。在此基础上,研究了子阵列参数选择(子阵列包含晶片数及相邻子阵列间隔晶片数)及探头位置对裂纹方向识别的影响。通过对散射系数分布图中提取的3个特征指标,角度测量误差、角度分辨率及相对脊带宽度,进行主成分分析,评价了子阵列参数设置(如子阵列包含晶片数及相邻子阵列间隔晶片数)对裂纹方向识别的影响,优化出最佳的检测位置及子阵列参数设置。仿真和检测实验结果表明,当相邻子阵列间隔晶片数为1,包含晶片数为11个时,可以利用超声散射系数分布进行裂纹方向的准确测量,测量误差小于2%。   相似文献   

19.
Elasticity imaging is an emerging medical imaging modality. Methods involving acoustic radiation force excitation and pulse-echo ultrasound motion detection have been investigated to assess the mechanical response of tissue. In this work new methods for dynamic radiation force excitation and motion detection are presented. The theory and model for harmonic motion detection of a vibrating reflective target are presented. The model incorporates processing of radio frequency data acquired using pulse-echo ultrasound to measure harmonic motion with amplitudes ranging from 100 to 10,000 nm. A numerical study was performed to assess the effects of different parameters on the accuracy and precision of displacement amplitude and phase estimation and showed how estimation errors could be minimized. Harmonic pulsed excitation is introduced as a multifrequency radiation force excitation method that utilizes ultrasound tonebursts repeated at a rate f(r). The radiation force, consisting of frequency components at multiples of f(r), is generated using 3.0 MHz ultrasound, and motion detection is performed simultaneously with 9.0 MHz pulse-echo ultrasound. A parameterized experimental analysis showed that displacement can be measured with small errors for motion with amplitudes as low as 100 nm. The parameterized numerical and experimental analyses provide insight into how to optimize acquisition parameters to minimize measurement errors.  相似文献   

20.
The finite difference method is used to solve the task of the developed pulsating laminar flow in a rectangular channel. The optimum of the difference scheme parameters was determined. Data on the amplitude and phase of the longitudinal velocity oscillations, the hydraulic and friction drag coefficients, the shear stress on the wall have been obtained. Using the dimensionless value of the frequency pulsations two characteristic regimes — the quasisteady-state regime and the high-frequency regime have been identified. In the quasi-steady-state regime, the values of all hydrodynamic quantities at each instant of time correspond to the velocity value averaged over the cross section at a given moment of time. It is shown that in the high-frequency regime, the dependences on the dimensionless oscillation frequency of oscillating components of hydrodynamic quantities are identical for rectilinear channels with a different cross-sectional form (round pipe, flat and a rectangular channels). The effect of the aspect ratio of the rectangular channel sides channel on the pulsating flow dynamics has been analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号