首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The mechanical reliability of transparent In-Zn-Sn-O (IZTO) films grown using pulsed DC magnetron sputtering with a single oxide alloyed ceramic target on a transparent polyimide (PI) substrate at room temperature is investigated. All IZTO films deposited at room temperature have an amorphous structure. However, their optical and electrical properties change depending on the oxygen partial pressure applied during depositing process. At an oxygen partial pressure of 3%, the films exhibit a resistivity of 8.3 × 10−4 Ω cm and an optical transmittance of 86%. Outer bending tests show that the critical bending radius decreases from 10 mm to 7.5 mm when the oxygen partial pressure increases from 1% to 3%. In the inner bending test, the critical bending radius is independent of oxygen partial pressure at 3.5 mm, indicating excellent film flexibility. In the dynamic fatigue test, the electrical resistance of the films reduces by less than 1% for more than 2000 bending cycles. These results suggest that IZTO films have excellent mechanical durability and flexibility in comparison to ITO films.  相似文献   

2.
Tin-doped indium oxide (ITO) films with 200 nm thickness were deposited on glass substrates by DC magnetron sputtering at room temperature. And they were annealed by rapid thermal annealing (RTA) method in vacuum ambient at different temperature for 60 s. The effect of annealing temperature on the structural, electrical and optical properties of ITO films was investigated. As the RTA temperature increases, the resistivity of ITO films decreases dramatically, and the transmittance in the visible region increases obviously. The ITO film annealed at 600 °C by RTA in vacuum shows a resistivity of 1.6 × 10−4 Ω cm and a transmittance of 92%.  相似文献   

3.
Indium tin oxide (ITO) thin films were deposited onto glass substrates by rf magnetron sputtering of ITO target and the influence of substrate temperature on the properties of the films were investigated. The structural characteristics showed a dependence on the oxygen partial pressure during sputtering. Oxygen deficient films showed (4 0 0) plane texturing while oxygen-incorporated films were preferentially oriented in the [1 1 1] direction. ITO films with low resistivity of 2.05 × 10−3 Ω cm were deposited at relatively low substrate temperature (150 °C) which shows highest figure of merit of 2.84 × 10−3 square/Ω⋅  相似文献   

4.
Indium tin oxide (ITO) films were deposited on a Si (1 0 0) substrate at room temperature by cesium-assisted magnetron sputtering. Including plasma characteristics, the structural, electrical, and optical properties of deposited films were investigated as a function of cesium partial vapor pressure controlled by cesium reservoir temperature. We calculated the cesium coverage on the target surface showing maximum formation efficiency of negative ions by means of the theoretical model. Cesium addition promotes the formation efficiency of negative ions, which plays important role in enhancing the crystallinity of ITO films. In particular, the plasma density was linearly increased with cesium concentrations. The resultant decrease in specific resistivity and increase in transmittance (82% in the visible region) at optimum cesium concentration (4.24 × 10−4 Ω cm at 80 °C of reservoir temperature) may be due to enhanced crystallinity of ITO films. Excess cesium incorporation into ITO films resulted in amorphization of its microstructure leading to degradation of ITO crystallinity. We discuss the cesium effects based on the growth mechanism of ITO films and the plasma density.  相似文献   

5.
Transparent and conducting ITO/Au/ITO multilayered films were deposited without intentional substrate heating on polycarbonate (PC) substrate using a magnetron sputtering process. The thickness of ITO, Au and ITO metal films in the multilayered structure was constant at 50, 10 and 40 nm, respectively.Although the substrate temperature was kept constant at 70 °C, ITO/Au/ITO films were polycrystalline with an (1 1 0) X-ray diffraction peak, while single ITO films were amorphous. Surface roughness analysis indicated ITO films had a higher average roughness of 1.76 nm, than the ITO/Au/ITO film roughness of 0.51 nm. The optoelectrical properties of the ITO/Au/ITO films were dependent on the Au thin film, which affected the ITO film crystallinity. ITO/Au/ITO films on PC substrates were developed with a resistivity as low as 5.6 × 10−5 Ω cm and a high optical transmittance of 71.7%.  相似文献   

6.
Polycrystalline ZnO thin films codoped with Na and N were obtained by chemical bath deposition. The structural characteristic and the optical properties of the rapid thermal annealed ZnO:(Na,N) films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer (EDS), Raman spectrum and room-temperature photoluminescence. After RTA treatment, the XRD spectra showed a continuous decrease of the full- width at half-maximum (FWHM) of the (0 0 2) diffraction peak of the ZnO:(Na,N) film. The Raman spectra revealed that the intensity of the mode around 582 cm−1 increased with the increase of the RTA temperature. The PL spectra showed different trends in the UV luminescence of ZnO:(Na,N) films after RTA treatments.  相似文献   

7.
Highly conducting and transparent thin films of tungsten (W)-doped indium oxide were obtained using pulsed laser deposition to study the effect of growth temperature and oxygen pressure on structural, optical and electrical properties. The transparency of the films is seen to largely depend on the growth temperature. The electrical properties, however, are found to depend strongly on both the growth temperature and the oxygen pressure. High mobility (up to 358 cm2 V−1 s−1), low resistivity (1.1 × 10−4 Ω cm), and relatively high transmittance (∼90%) tungsten-doped indium oxide films have been prepared at a growth temperature of 500 °C and an oxygen pressure of 1 × 10−6 bar.  相似文献   

8.
Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.  相似文献   

9.
By ablating titanium containing In2O3 target with a KrF excimer laser, highly conducting and transparent films on quartz were obtained to investigate the effects of growth temperature and oxygen pressure on the structural, optical and electrical properties of these films. We find that the transparency of the films depends more on the growth temperature and less on the oxygen pressure. Electrical properties, however, are found to be sensitive to both the growth temperature and oxygen pressure. We report in this paper that a growth temperature of 500 °C and an oxygen pressure of 7.5 × 10−7 bar lead to titanium-doped indium oxide films which have high mobility (up to 199 cm2 V−1 s−1), low resistivity (9.8 × 10−5 Ω cm), and relatively high transmittance (∼88%).  相似文献   

10.
In this paper, a shift in the photoluminescence (PL) peak from blue to near-infrared region was observed in the Si+-implanted 400-nm-thick SiO2 films with the rapid thermal annealing (RTA) method only. As the Si+-fluence was 1×1016 ions/cm2, a blue band was observed in the films after RTA at 1050 °C for 5 s in dry-N2 atmosphere; then, the band shifted from blue to orange upon increasing the holding temperature of RTA to 1250 °C in the films after the isochronal RTA in dry N2. Furthermore, while the fluence was increased to 3×11016 ions/cm2 and the holding temperature was at the same range between 1050 and 1250 °C, the PL peak occurred between red and near-infrared regions. Although the RTA and conventional thermal annealing (CTA) methods produce a similar mechanism, the CTA method needs a much longer annealing-time and a higher Si+-implanted dose than the RTA method for producing the same shift and intensity of PL peak from the as-implanted sample. Therefore, the RTA method can produce the mechanism in the Si+-implanted sample with the PL energy between blue and near-infrared band in place of the CTA method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号