首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The NEutron-induced POsitron source MUniCh (NEPOMUC) at the research reactor FRM II delivers a low-energy positron beam (E = 15-1000 eV) of high intensity in the range between 4 × 107 and 5 × 108 moderated positrons per second. At present four experimental facilities are in operation at NEPOMUC: a coincident Doppler-broadening spectrometer (CDBS) for defect spectroscopy and investigations of the chemical vicinity of defects, a positron annihilation-induced Auger-electron spectrometer (PAES) for surface studies and an apparatus for the production of the negatively charged positronium ion Ps. Recently, the pulsed low-energy positron system (PLEPS) has been connected to the NEPOMUC beam line, and first positron lifetime spectra were recorded within short measurement times. A positron remoderation unit which is operated with a tungsten single crystal in back reflection geometry has been implemented in order to improve the beam brilliance. An overview of NEPOMUC's status, experimental results and recent developments at the running spectrometers are presented.  相似文献   

2.
The sticking coefficient of nitrogen gas on a thick solid nitrogen film on a copper cold finger was studied at low temperature. For surface temperatures of about 12 K the sticking coefficient is measured to be 99.0 ± 0.6%. Our result implies that it will be possible to make a intense and high brightness slow positron source starting from a small diameter deposit of the gaseous positron emitter 13N2 produced in the reaction 12C(d,n)13N.  相似文献   

3.
The new research reactor FRM-II near Munich has a strong positron source, which delivers an intense, nearly monoenergetic positron beam. Our positron systems, the pulsed low energy positron source (PLEPS) and the scanning positron microscope (SPM) will be operated at this beam. Some aspects of matching these systems to the new positron source will be discussed.Considerable improvements are expected, e.g. more than 105 s−1 recorded events at PLEPS and sub-micrometre resolution at SPM. They will enable investigations in so far inaccessible problems like the evaluation of annihilation characteristics and trapping constants of individual defects or studies of fast dynamical processes. In applied materials science complex defect structures will be studied which demand a resolution into many differing lifetimes, e.g. fractured specimens, wear, corrosion, etc. Also large series of measurements at small systematic modifications are planned. There is also the opportunity to analyse in addition the chemical microstructure of the specimens by means of a hydrogen microprobe and other ion beam techniques available close to FRM-II at the Technical University of Munich.  相似文献   

4.
In this experiment, nitrogen ions were implanted into CZ-silicon wafer at 100 keV at room temperature with the fluence of 5 × 1015 N2+/cm2, followed by rapid thermal processing (RTP) at different temperatures. The single detector Doppler broadening and coincidence Doppler broadening measurements on slow positron beam were carried out to characterize the defects in the as-implanted silicon and RTP-treated samples. It is found that both nitrogen-vacancy complexes (N-Vsi) and oxygen-vacancy complexes (O-Vsi) produced by nitrogen implantation diffuse back to the sample surface upon annealing. But the N-Vsi and the O-Vsi complete with each other and give a summed effect on positron annihilation characteristics. It is shown that the N-Vsi win out the O-Vsi in as-implanted sample and by RTP at 650 °C, 750 °C, which make the S-parameter increase; O-Vsi plays a dominant role after annealing above 850 °C, which makes the S parameter decrease.  相似文献   

5.
The Forschungszentrum Dresden-Rossendorf provides an intense pulsed 40 MeV electron beam with high brilliance and low emittance (ELBE). The pulse has a length of 1-10 ps and a repetition time of 77 ns, or in slow mode 616 ns. The EPOS system (ELBE Positron Source) generates by pair production on a tungsten converter and a tungsten moderator an intense pulsed beam of mono-energetic positrons. To transport the positrons to the laboratory (12 m) we constructed a magnetic beam guidance system with a longitudinal magnetic field of 75 G. In the laboratory outside the cave, the positron beam is chopped and bunched according to the time structure, because the very sharp bunch structure of the electron pulses is broadened for the positron beam due to transport and moderation.  相似文献   

6.
The slow positron facility TEPOS at the Giessen electron LINAC (36 MeV, 120 μA) has been used to produce an intense beam of moderated positrons which is magnetically guided over a distance of 9 m. At a transportation energy of 100 eV about 106 slow e+/s could be extracted out of the magnetic field (0.01 T) and have been electrostatically focussed inside a microwave guide. A small fraction of the positrons form positronium in the excited staten=2. The spontaneous emission of Lyman-α photons (λ=243 nm) from the 2P-states is observed by a photomultiplier. Microwave induced fine-structure transitions 23S1?23P2,1,0 have been observed at 8617(2), 13010(3) and 18494(2) MHz by an increase of the Lyman-α counting rate. The present errors take into consideration only statistical contributions; systematic errors in the same order of magnitude may originate from frequency dependent variations of the microwave power. The observed linewidth exceeds the natural linewidth of 50 MHz by Doppler-effect and power broadening. Values around 100 MHz could be reached at the lowest applied power levels.  相似文献   

7.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

8.
The Munich pulsed low energy positron beam system (PLEPS) is now installed at the high intensity positron source (NEPOMUC) at the Munich Research Reactor FRM-II. In order to enhance the performance of the system several improvements have been implemented: two additional collinear detector ports have been installed. Therefore in addition to the normal lifetime measurements it is now possible to simultaneously perform Doppler-broadening, coincident Doppler-broadening and age momentum correlation experiments. An additional chopper was included to periodically suppress pulses and therefore to extend the standard time window of 20 ns for precise measurements of longer lifetimes. First test-experiments have been performed in May and July 2007. With all pulsing components in operation we achieved a count-rate of 1.4 × 104 counts per second. The total time resolution (pulsing and detector) was about 240 ps (FWHM) with a peak to background ratio up to 6 × 103:1.  相似文献   

9.
A pulsed source of positrons has been developed which may be useful for antihydrogen ( ) formation because it is portable when compared to accelerator-based sources. This positron accumulator uses a Penning-style trap to collect moderated positrons from a radioactive source. The positron pulses may be emitted with repetition rates in the range of 50–1000 Hz, which is appropriate for production schemes involving laser-induced recombination. Bunching techniques may be used to vary the width of the positron pulses over the range 30–120 ns (FWHM) to match the width of the antiproton and/or laser pulses. The efficiency of the accumulator increases from ∼ 10% at 100 Hz to ∼ 50% at 1000 Hz. 250 Hz the efficiency is ∼ 25% and the accumulator has delivered up to 8 e+/pulse per mCi of positron activity. This translates into ∼ 1.2 × 105 e+/pulse for a 100 Ci58Co source.  相似文献   

10.
Ion beam mixing is a useful technique to produce modifications at the surface and interface of the solid material. In the present work, ion beam induced modifications at Co/Si interface using 120 MeV Au-ion irradiation has been studied at ion fluences in the range of 1012 to 1014 ions/cm2 by secondary ion mass spectroscopy (SIMS) technique and calculated mixing efficiency at the interface. Silicide formation has been discussed on the basis of swift heavy ion (SHI) irradiation induced effects. Surface morphology and roughness of irradiated system with fluence 5 × 1013 and 1 × 1014 ions/cm2 is studied by scanning tunneling microscopy (STM). Roughness of the surface shows marks of melting process and confirms the appearance of some pinholes in the reacted Co/Si system. Comparative study was also undertaken on annealed sample at 300 °C and then irradiated at a dose 1 × 1014 ions/cm2.  相似文献   

11.
This paper investigates the short-living absorption and the emission of CsI(Na) under a pulsed electron beam (Еe=0.25 MeV, t1/2=15 ns and W=0.003…0.16 J/cm2). The bands of singlet self-trapped excitons, as well as Na0 and Vk color centers have been detected in the transient absorption spectrum of CsI(Na). It has been found that the activator luminescence spectrum, peaking at 3.0 eV, fits a Gaussian (Em=3.0 eV and FWHM=0.44±0.02 eV at 80 K) and remains the same at different time delays within 10−8-10−3 s. The decay kinetics of the 3.0 eV emission has one nanosecond exponential component and two microsecond ones with time constants 1.0 and 3.0 μs, which remain unchanged within 78-150 K. It is concluded that the activator emission is due to the radiative annihilation of sodium-perturbed two halide excitons from the non-relaxed singlet state. The pathways of such excitons creation are discussed.  相似文献   

12.
We have developed a positron microbeam using magnetic lenses based on the commercial scanning electron microscope (SEM). A slow positron beam was generated using a handmade source with 22Na and a solid neon moderator. The beam diameter was 3.9 μm on a target. Two-dimensional image of S parameter was successfully obtained. By introducing a beam pulsing section, positron lifetime measurement beam is also available.  相似文献   

13.
A beam of relativistic antihydrogen atoms — the bound state ( e+) — can be created by circulating the beam of an antiproton storage ring through an internal gas target. An antiproton which passes through the Coulomb field of a nucleus will create e+e pairs, and antihydrogen will form when a positron is created in a bound instead of continuum state about the antiproton. The cross section for this process is roughly 3Z 2 pb for antiproton momenta about 6 GeV/c. A sample of 600 antihydrogen atoms in a low-emittance, neutral beam will be made in 1995 as an accidental byproduct of Fermilab experiment E760. We describe a simple experiment, Fermilab Proposal P862, which can detect this beam, and outline how a sample of a few-104 atoms can be used to measure the antihydrogen Lamb shift to 1 %. Work supported in part by Department of Energy contract DE-AC03-76SF00515 (SLAC). Work supported by Fondo Nacional de Investigación Científica y Tecnológica, Chile.  相似文献   

14.
We present experimental results obtained in H-implanted GaN and He- and Li-implanted ZnO. The ion energies were varied in the range 100-850 keV, and the implantation fluences in the range 5 × 1013 to 1 × 1018 cm−2. In addition, conventional and flash anneals at temperatures 500-1400 °C were performed on the ZnO samples. The data obtained with a slow positron beam show that vacancy clusters are formed in as-implanted samples with fluences above 1 × 1017 cm−2. Below this value only single vacancies are detected after implantation, but vacancy clusters can be formed and subsequently dissociated by thermal annealings.  相似文献   

15.
A slow positron beam coupled with Doppler broadening (DB) spectrometer was used to measure the low- and high-momentum annihilation fractions, S and W, respectively, as a function of positron energy in UO2 disks implanted with different 1 MeV 3He fluences and annealed in ArH2 or in vacuum. The S(E) and W(E) behaviors indicate that for fluences in the range from 2 × 1014 to 2 × 10163He cm−2, the vacancy defects distribution evolves with the annealing temperature in the range from 264 to 700 °C under ArH2. This evolution is found to be dependent on the 3He fluence implanted in the sintered UO2 disks. For the lowest fluence of 2 × 10143He cm−2, the S(W) plot with positron energy as the running parameter suggests that only the concentration of vacancy defects decreases when annealing temperature increases. For the highest implantation fluences (from 5 × 1015 to 2 × 10163He cm−2) the S(W) plot suggests that the nature of the vacancy defects changes in the annealing temperature range from 260 to 400 °C. Measurements performed in implanted UO2 disks annealed in vacuum have revealed a partial recovery of the vacancy defects possibly due to their recombination with mobile oxygen interstitials. The role of the hydrogen infusion into the disk is also discussed.  相似文献   

16.
Single crystalline ZnO films were grown on c-plane GaN/sapphire (0 0 0 1) substrates by molecular beam epitaxy. Cr+ ions were implanted into the ZnO films with three different doses, i.e., 1 × 1014, 5 × 1015, and 3 × 1016 cm−2. The implantation energy was 150 keV. Thermal treatment was carried out at 800 °C for 30 s in a rapid thermal annealing oven in flowing nitrogen. X-ray diffraction (XRD), atomic force microscopy, Raman measurements, transmission electron microscopy and superconducting quantum interference device were used to characterize the ZnO films. The results showed that thermal annealing relaxed the stress in the Cr+ ions implanted samples and the implantation-induced damage was partly recovered by means of the proper annealing treatment. Transmission electron microscopy measurements indicated that the first five monolayers of ZnO rotated an angle off the [0 0 0 1]-axis of the GaN in the interfacial layer. The magnetic-field dependence of magnetization of annealed ZnO:Cr showed ferromagnetic behavior at room temperature.  相似文献   

17.
Observations of vacancy clusters formed in Czochralski (Cz) Si after high energy ion implantation are reported. Vacancy clusters were created by 2 MeV Si ion implantation of 1 × 1015 ions/cm2 and after annealing between 600 and 650 °C. Doppler broadening measurements using a slow positron beam have been performed on the self-implanted Si samples, both as-implanted and after annealing between 200 and 700 °C for time intervals ranging from 15 to 120 min. No change in the S parameter was noted after the thermal treatment up to 500 °C. However, the divacancies (V2) created as a consequence of the implantation were found to start agglomerating at 600 °C, forming vacancy clusters in two distinct layers below the surface; the first layer is up to 0.5 μm and the second layer is up to 2 μm. The S-W plots of the data suggest that clusters of the size of hexavacancies (V6) could be formed in both layers after annealing for up to an hour at 600 °C or half an hour at 650 °C. After annealing for longer times, it is expected that vacancies are a mixture of V6 and V2, with V6 most probably dominating in the first layer. Further annealing for longer times or higher temperatures breaks up the vacancy clusters or anneals them away.  相似文献   

18.
The effects of annealing ambient on the He-induced voids in silicon were investigated using the combination of the Doppler broadening spectroscopy using a variable-energy positron beam and cross-section transmission electron microscopy (XTEM). A 〈1 0 0〉-oriented silicon wafer was implanted with He ions at an energy of 15 keV to a dose of 2 × 1016 cm−2 at room temperature. Post-implantation, the samples were annealed at a temperature of 1000 °C in the ambient of vacuum, argon, nitrogen, air and oxygen. Positron annihilation spectroscopy (PAS) spectra varied with the annealing ambient. XTEM micrographs demonstrated that the density of He-induced voids could be influenced by the annealing ambient.  相似文献   

19.
Long pulse laser shots of the PALS iodine laser in Prague have been used to obtain metal target ablation at various experimental conditions. Attention is paid mainly to the dependencies of the crater diameter on the position of minimum laser-focus spot with regard to the target surface, by using different laser wavelengths and laser energies. Not only a single one, but two minima, independently of the wavelength, of the target irradiation angle and of the target material, were recorded. Significant asymmetries, ascribed to the non-linear effects of intense laser beam with pre-formed plasma, were found, too. Estimations of ejected mass per laser pulse are reported and used to calculate the efficiency of laser-driven loading. Results on metal target ablation and crater formation at high intensities (from 2 × 1013 to 3 × 1016 W/cm2) are presented and compared. Crater depth, crater diameter and etching yield are reported versus the laser energy, in order to evaluate the ablation threshold fluence.  相似文献   

20.
The effect of very high energy electron beam irradiation on the field emission characteristics of multi-walled carbon nanotubes (MWCNTs) has been investigated. The MWCNTs films deposited on silicon (Si) substrates were irradiated with 6 MeV electron beam at different fluence of 1×1015, 2×1015 and 3×1015 electrons/cm2. The irradiated films were characterized using scanning electron microscope (SEM) and micro-Raman spectrometer. The SEM analysis clearly revealed a change in surface morphology of the films upon irradiation. The Raman spectra of the irradiated films show structural damage caused by the interaction of high-energy electrons. The field emission studies were carried out in a planar diode configuration at the base pressure of ∼1×10−8 mbar. The values of the threshold field, required to draw an emission current density of ∼1 μA/cm2, are found to be ∼0.52, 1.9, 1.3 and 0.8 V/μm for untreated, irradiated with fluence of 1×1015, 2×1015 and 3×1015 electrons/cm2. The irradiated films exhibit better emission current stability as compared to the untreated film. The improved field emission properties of the irradiated films have been attributed to the structural damage as revealed from the Raman studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号