首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show from first principles the emergence of classical Boltzmann equations from relativistic nonequilibrium quantum field theory as described by the Kadanoff–Baym equations. Our method applies to a generic quantum field, coupled to a collection of background fields and sources, in a homogeneous and isotropic spacetime. The analysis is based on analytical solutions to the full Kadanoff–Baym equations, using the WKB approximation. This is in contrast to previous derivations of kinetic equations that rely on similar physical assumptions, but obtain approximate equations of motion from a gradient expansion in momentum space. We show that the system follows a generalized Boltzmann equation whenever the WKB approximation holds. The generalized Boltzmann equation, which includes off-shell transport, is valid far from equilibrium and in a time dependent background, such as the expanding universe.  相似文献   

2.
We describe a kinetic theory approach to quantum gravity by which we mean a theory of the microscopic structure of space-time, not a theory obtained by quantizing general relativity. A figurative conception of this program is like building a ladder with two knotty poles: quantum matter field on the right and space-time on the left. Each rung connecting the corresponding knots represents a distinct level of structure. The lowest rung is hydrodynamics and general relativity; the next rung is semiclassical gravity, with the expectation value of quantum fields acting as source in the semiclassical Einstein equation. We recall how ideas from the statistical mechanics of interacting quantum fields helped us identify the existence of noise in the matter field and its effect on metric fluctuations, leading to the establishment of the third rung: stochastic gravity, described by the Einstein–Langevin equation. Our pathway from stochastic to quantum gravity is via the correlation hierarchy of noise and induced metric fluctuations. Three essential tasks beckon: (1) deduce the correlations of metric fluctuations from correlation noise in the matter field; (2) reconstituting quantum coherence—this is the reverse of decoherence—from these correlation functions; and (3) use the Boltzmann–Langevin equations to identify distinct collective variables depicting recognizable metastable structures in the kinetic and hydrodynamic regimes of quantum matter fields and how they demand of their corresponding space-time counterparts. This will give us a hierarchy of generalized stochastic equations—call them the Boltzmann–Einstein hierarchy of quantum gravity—for each level of space-time structure, from the the macroscopic (general relativity) through the mesoscopic (stochastic gravity) to the microscopic (quantum gravity).  相似文献   

3.
The lepton asymmetry generated by the out-of-equilibrium decays of heavy Majorana neutrinos with a quasi-degenerate mass spectrum is resonantly enhanced. In this work, we study this scenario within a first-principle approach. The quantum field theoretical treatment is applicable for mass splittings of the order of the width of the Majorana neutrinos, for which the enhancement is maximally large. The non-equilibrium evolution of the mixing Majorana neutrino fields is described by a formal analytical solution of the Kadanoff–Baym equations, that is obtained by neglecting the back-reaction. Based on this solution, we derive approximate analytical expressions for the generated asymmetry and compare them to the Boltzmann result. We find that the resonant enhancement obtained from the Kadanoff–Baym approach is smaller compared to the Boltzmann approach, due to additional contributions that describe coherent transitions between the Majorana neutrino species. We also discuss corrections to the masses and widths of the degenerate pair of Majorana neutrinos that are relevant for very small mass splitting, and compare the approximate analytical result for the lepton asymmetry with numerical results.  相似文献   

4.
Thermal leptogenesis explains the observed matter–antimatter asymmetry of the universe in terms of neutrino masses, consistent with neutrino oscillation experiments. We present a full quantum mechanical calculation of the generated lepton asymmetry based on Kadanoff–Baym equations. Origin of the asymmetry is the departure from equilibrium of the statistical propagator of the heavy Majorana neutrino, together with CP violating couplings. The lepton asymmetry is calculated directly in terms of Green’s functions without referring to “number densities”. Compared to Boltzmann and quantum Boltzmann equations, the crucial difference are memory effects, rapid oscillations much faster than the heavy neutrino equilibration time. These oscillations strongly suppress the generated lepton asymmetry, unless the standard model gauge interactions, which cause thermal damping, are properly taken into account. We find that these damping effects essentially compensate the enhancement due to quantum statistical factors, so that finally the conventional Boltzmann equations again provide rather accurate predictions for the lepton asymmetry.  相似文献   

5.
6.
7.
The dynamics of weakly coupled, non-abelian gauge fields at high temperature is non-perturbative if the characteristic momentum scale is of order |k|g2T. Such a situation is typical for the processes of electroweak baryon number violation in the early Universe. Bödeker has derived an effective theory that describes the dynamics of the soft field modes by means of a Langevin equation. This effective theory has been used for lattice calculations so far [G.D. Moore, Nucl. Phys. B568 (2000) 367. Available from: <hep-ph/9810313>; G.D. Moore, Phys. Rev. D62 (2000) 085011. Available from: <hep-ph/0001216>]. In this work we provide a complementary, more analytic approach based on Dyson–Schwinger equations. Using methods known from stochastic quantitation, we recast Bödeker’s Langevin equation in the form of a field theoretic path integral. We introduce gauge ghosts in order to help control possible gauge artefacts that might appear after truncation, and which leads to a BRST symmetric formulation and to corresponding Ward identities. A second set of Ward identities, reflecting the origin of the theory in a stochastic differential equation, is also obtained. Finally, Dyson–Schwinger equations are derived.  相似文献   

8.
Stochastic derivations of the Schrödinger equation are always developed on very general and abstract grounds. Thus, one is never enlightened which specific stochastic process corresponds to some particular quantum mechanical system, that is, given the physical system—expressed by the potential function, which fluctuation structure one should impose on a Langevin equation in order to arrive at results identical to those comming from the solutions of the Schrödinger equation. We show, from first principles, how to write the Langevin stochastic equations for any particular quantum system. We also show the relation between these Langevin equations and those proposed by Bohm in 1952. We present numerical simulations of the Langevin equations for some quantum mechanical problems and compare them with the usual analytic solutions to show the adequacy of our approach. The model also allows us to address important topics on the interpretation of quantum mechanics.  相似文献   

9.
A new approach to quantum field theory is developed based on the Langevin equation (stochastic quantization). Applications to conventional and gauge theories are discussed, as well as various extensions; the Langevin difference equation, the complex Langevin equation in Minkowski space, etc.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 66–76, March, 1986.  相似文献   

10.
We derive system of equations describing fluidity of the medium consisting of non-relativistic particles with finite mass-widths. For that we use expressions for the kinetic Noether 4-current and the Noether energy–momentum tensor being conserved provided one uses self-consistent approximations to the gradient expanded Kadanoff–Baym equations. Kinetic coefficients entering equations of non-ideal hydrodynamics of resonances are obtained in terms of the real and imaginary parts of the self-energies within a relaxation time approximation.  相似文献   

11.
12.
Howard Brenner   《Physica A》2006,370(2):190-224
Öttinger's recent nontraditional incorporation of fluctuations into the formulation of the friction matrix appearing in the phenomenological GENERIC theory of nonequilibrium irreversible processes is shown to furnish transport equations for single-component gases and liquids undergoing heat transfer which support the view that revisions to the Navier–Stokes–Fourier (N–S–F) momentum/energy equation set are necessary, as empirically proposed by the author on the basis of an experimentally supported theory of diffuse volume transport. The hypothesis that the conventional N–S–F equations prevail without modification only in the case of “incompressible” fluids, where the density ρ of the fluid is uniform throughout, serves to determine the new phenomenological parameter α appearing in the GENERIC friction matrix. In the case of ideal gases the consequences of this constitutive hypothesis are shown to yield results identical to those derived theoretically by Öttinger on the basis of a “proper” coarse-graining of Boltzmann's kinetic equation. A major consequence of the present work is that the fluid's specific momentum density v is equal to its volume velocity vv, rather than to its mass velocity vm, contrary to current views dating back 250 years to Euler. In the case of rarefied gases the proposed modifications are also observed to agree with those resulting from Klimontovich's molecularly based, albeit ad hoc, self-diffusion addendum to Boltzmann's collision integral. Despite the differences in their respective physical models—molecular vs. phenomenological—the role played by Klimontovich's collisional addition to Boltzmann's equation in modifying the N–S–F equations is noted to constitute a molecular counterpart of Öttinger's phenomenological fluctuation addition to the GENERIC friction matrix. Together, these two theories collectively recognize the need to address multiple- rather than single-encounter collisions between a test molecule and its neighbors when formulating physically satisfactory statistical–mechanical theories of irreversible transport processes in gases. Overall, the results of the present work implicitly support the unorthodox view, implicit in the GENERIC scheme, that the translation of Newton's discrete mass-point molecular mechanics into continuum mechanics, the latter as embodied in the Cauchy linear momentum equation of fluid mechanics, cannot be correctly effected independently of the laws of thermodynamics. While Öttinger's modification of GENERIC necessitates fundamental changes in the foundations of fluid mechanics in regard to momentum transport, no basic changes are required in the foundations of linear irreversible thermodynamics (LIT) beyond recognizing the need to add volume to the usual list of extensive physical properties undergoing transport in single-species fluid continua, namely mass, momentum and energy. An alternative, nonGENERICally based approach to LIT, derived from our findings, is outlined at the conclusion of the paper. Finally, our proposed modifications of both Cauchy's linear momentum equation and Newton's rheological constitutive law for fluid-phase continua are noted to be mirrored by counterparts in the literature for solid-phase continua dating back to the classical interdiffusion experiments of Kirkendall and their subsequent interpretation by Darken in terms of diffuse volume transport.  相似文献   

13.
We study the diagonalization problem of certain discrete quantum integrable models by the method of Baxter's TQ relation from the algebraic geometry aspect. Among those the Hofstadter type model (with the rational magnetic flux), discrete quantum pendulum and discrete sine-Gordon model are our main concern in this report. By the quantum inverse scattering method, the Baxter's TQ relation is formulated on the associated spectral curve, a high genus Riemann surface in general, arisen from the study of spectrum problem of the system. In the case of degenerated spectral curve where the spectral variables lie on rational curves, we obtain the complete and explicit solution of the TQ polynomial equation associated to the model, and the intimate relation between the Baxter's TQ relation and algebraic Bethe Ansatz is clearly revealed. The algebraic geometry of a general spectral curve attached to the model and certain qualitative properties of solutions of the Baxter's TQ relation are discussed incorporating the physical consideration.  相似文献   

14.
We present a framework for analyzing black hole backreaction from the point of view of quantum open systems using influence functional formalism. We focus on the model of a black hole described by a radially perturbed quasi-static metric and Hawking radiation by a conformally coupled massless quantum scalar field. It is shown that the closed-time-path (CTP) effective action yields a non-local dissipation term as well as a stochastic noise term in the equation of motion, the Einstein–Langevin equation. Once the thermal Green's function in a Schwarzschild background becomes available to the required accuracy, the strategy described here can be applied to obtain concrete results on backreaction. We also present an alternative derivation of the CTP effective action in terms of the Bogolyubov coefficients, thus making a connection with the interpretation of the noise term as measuring the difference in particle production in alternative histories.  相似文献   

15.
16.
We describe mixing scalar particles and Majorana fermions using Closed-Time-Path methods. From the Kadanoff–Baym equations, we obtain the charge asymmetry, that is generated from decays and inverse decays of the mixing particles. Within one single formalism, we thereby treat Leptogenesis from oscillations and recover as well the standard results for the asymmetry in Resonant Leptogenesis, which apply when the oscillation frequency is much larger than the decay rate. Analytic solutions for two mixing neutral particles in a constant-temperature background illustrate our results qualitatively. We also perform the modification of the kinetic equations that is necessary in order to take account of the expansion of the Universe and the washout of the asymmetry.  相似文献   

17.
The goal of this paper is to develop the formalism of the two-particle irreducible (2PI) (G. Baym (1962). Physical Review 127, 1391; H. D. Dahmen and G. Jona Lasino (1962). Nuovo Cimento A 52, 807; C. de Dominicis and P. Martin (1964). Journal of Mathematical Physics 5, 14; J. Luttinger and J. Ward (1960). Physical Review 118, 1417; B. Vanderheyden and G. Baym (1998). Journal of Statistical Physics 98, 843; B. Vanderheyden and G. Baym (2000). In Progress in Nonequilibrium Green's Functions, World Scientific, Singapore). (or Cornwall–Jackiw–Tomboulis (CJT) (J. Cornwall, R. Jackiw, and E. Tomboulis (1974). Physical Review D 10, 2428; U. Kraemmer and A. Rebhan (2004). Reports on Progress in Physics 67, 351; R. Norton and J. Cornwall (1975). Annals of Physics 91, 106) effective action (EA) in a way appropiate to its application to nonequilibrium gauge theories. We hope this review article will stimulate new work into this field.  相似文献   

18.
We reconsider the effective mass of a scalar field which interact with visible sector via Planck-suppressed coupling in supergravity framework. We focus on the radiation-dominated (RD) era after inflation. In this era, the effective mass is given by thermal average of interaction terms. To make our analysis clear, we rely on Kadanoff–Baym equations to evaluate the thermal average. We find that, in RD era, a scalar field acquires the effective mass of the order of H.  相似文献   

19.
A method is proposed to get information about carrier distribution function in superlattices and multiple quantum-well structures from the analysis of the vertical transport experiments in a transverse magnetic field. The method was applied to the GaAs/AlGaAs superlattices with wide quantum wells in strong (B=0–7 T) magnetic fields. It was shown that the distribution function of electron is nonequilibrium Boltzmann-like, with electronic temperature T=10–20 K.  相似文献   

20.
Quantum systems exhibit a smaller number of energetic states than classical systems (A. Einstein, 1907, Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme, Ann. Phys. 22, 180ff). We take up the selection criterion for this in two parts. (1) The selection problem between classical and nonclassical mechanical systems is formulated in terms of possible and impossible configurations (among others, this overcomes the difficulties occurring when discussing the behavior of quantum particles in terms of paths). (2) The (nonclassical) selection of the quantum states is formulated, using recurrence relations and the energy law. The reformulation of “quantization as eigenvalue problem” in terms of “quantization as selection problem” allows one to derive Schrödinger’s stationary equation from classical mechanics through a straightforward and unique procedure; the nonstationary and multibody equations are subsequently acquired within the same frame. In contrast to the (classical) eigenvalue problem, the (nonclassical) selection problem can be formulated and solved without any reference to additional a priori assumptions on the nature of the quantum system, such as the wave-corpuscle dualism or an underlying wave equation or the existence of Planck’s finite action parameter. The existence of such an additional parameter—as the only additional one—is inherent in the procedure. Within our axiomatic-deductive approach, we modify classical mechanics only where it itself indicates an inherent limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号