首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过分析光纤出射端面的光强分布,研究了光纤传输过程中激光二极管出射光束进入光纤时的指向角对出射端面光场分布的影响.提出一种影响光纤输出端光场的新因素,对数值孔径和光纤芯径两个影响因素进行了补充.在光纤传输过程中,将激光二极管出射的光束等效为大量光线,在二极管输出光的位置以及空间分布确定的情况下,使用光线追迹方法依次分析了单束和多束光的指向角以及光纤长度对出射面光强分布的影响.结果显示:单束入射光指向角的偏差会引起光纤输出端面光强极值位置的偏移,多束的情况可以导致光纤输出端光强呈现明显的环状分布,得出了入射光束指向角的偏差是影响光纤出射面光强分布和峰值位置的重要因素的结论,而光纤长度的变化对上述分布状况同样存在影响.  相似文献   

2.
周雨竹  黄莉莉  柴路  王清月  胡明列 《物理学报》2016,65(2):24206-024206
多芯光纤的输出光束只能在远场和焦点附近实现良好的同相位超模合束,这种超模传输特性大大影响了多芯光纤的应用范围.一种新型中空Kagome光纤为解决这一难题提供了可行的方案,利用中空Kagome光纤可以实现七芯光纤输出模式的整形合束.本文利用中心波长800 nm的钛宝石飞秒激光作为激光源,耦合入七芯非线性光子晶体光纤,得到700 nm至1050 nm的展宽光谱,并实现同相位超模输出.随后,将非线性展宽之后的宽谱七芯光束耦合至Kagome光子晶体光纤中,从Kagome光纤输出光斑呈高斯分布的模式传输,不再演变回七芯模式,耦合效率71%.实验还进一步验证此方法适用于不同结构的多芯光纤,为多芯光纤在高功率激光等领域的应用提供了参考.  相似文献   

3.
光纤耦合激光束输出光空间分布及其影响因素分析   总被引:1,自引:1,他引:0  
通过分析光纤出射端面的光强分布,研究了光纤传输过程中激光二极管出射光束进入光纤时的指向角对出射端面光场分布的影响.提出一种影响光纤输出端光场的新因素,对数值孔径和光纤芯径两个影响因素进行了补充.在光纤传输过程中,将激光二极管出射的光束等效为大量光线,在二极管输出光的位置以及空间分布确定的情况下,使用光线追迹方法依次分析...  相似文献   

4.
利用空间合束技术和光纤耦合技术将9只波长为915 nm单管芯半导体激光器高效率耦合进光纤中,制备出具有高功率、高亮度输出光纤耦合模块。应用ZEMAX光学软件进行模拟仿真后通过实验验证,光纤耦合模块可以通过芯径105μm、数值孔径0.22的光纤输出大于110 W的功率,并且亮度达到8.64 MW/(cm~2·sr)。  相似文献   

5.
采用光束整形和空间合束的方法,研制出高功率、高效率多阵列光纤耦合半导体激光模块。将波长为976nm连续工作的5个标准半导体阵列,通过对快轴进行准直和快慢轴光束旋转的方式进行光束整形,准直后进行空间合束,经耦合透镜聚焦,耦合入芯径400μm、数值孔径0.22的光纤。测量结果显示:光纤的出光功率最大可达到327 W,光纤耦合效率大于93.6%。  相似文献   

6.
半导体光纤耦合输出泵浦源是光纤激光器的核心器件,其性能直接制约光纤激光器的输出水平。采用COS封装的高功率LD芯片,通过VBG外腔光谱锁定和精密光束整形变换技术,结合偏振合束与精密聚焦耦合技术将18个LD单元耦合进105 μm/NA0.22光纤,获得不低于260 W功率输出。实验表明,该模块在注入电流18 A时,可获得稳定输出连续功率264 W,对应电光效率52%,输出光谱中心波长975.92 nm,谱宽0.51 nm。该设计为获得高功率、高亮度波长稳定泵浦源提供了一条可行途径,光纤耦合输出模块工程化后可广泛应用在光纤激光器泵浦等领域。  相似文献   

7.
为了研究以单管半导体激光器为基本单元的高功率、高亮度波长合束光纤耦合模块,设计出新型光纤激光器泵浦模块,基于ZEMAX光学设计软件等设计了一种由30支单管半导体激光器组成、可输出3种波长光束的光纤耦合模块。将经快慢轴整形、空间合束、波长合束、光路转向及聚焦的光束耦合进入芯径105μm、数值孔径0.22的普通光纤,最终得到尾纤输出端高于357.91 W的输出功率,光纤耦合效率为99.42%,光功率密度为27.24 MW/cm~2-stras。为了验证模块的实际操作的可行性,分析了光纤端面法线与入射光束之间的夹角对耦合效率的影响,结果显示该夹角对模块的耦合效率影响较小。同时,应用ANSYS软件对模块散热情况的分析结果可知,模块散热性能良好。故该模块各项性能良好,可靠性较高,实现了高功率、高亮度、多波长的多单管半导体激光器光纤耦合模块的设计目的。  相似文献   

8.
200W级高亮度半导体激光器光纤耦合模块   总被引:2,自引:0,他引:2  
光纤激光器系统需要高可靠性、高亮度、高功率光纤耦合输出二极管激光器模块作为泵浦源。基于mini-bar二极管激光器芯片,采用光束精密准直技术、自由空间合束技术来获得高亮度、高功率光纤耦合输出,针对光纤芯径为200μm、数值孔径为0.22的多模光纤,开展了线偏振二极管激光光纤耦合实验,实验结果表明:光纤稳定输出功率达280 W,对应亮度为5.87 MW/(cm2·sr),电-光效率为45.0%。采用偏振合束技术,光纤预期输出功率可达500 W,对应亮度超过10 MW/(cm2·sr)。该方法可应用于研制数百瓦级高亮度二极管激光光纤耦合输出激光器模块。  相似文献   

9.
基于菲涅耳-基尔霍夫衍射积分理论,研究了端面泵浦固体激光器中泵浦源——LD阵列光纤耦合模块的输出光空间特性,及其对振荡光特性的影响。结果显示:LD阵列光纤耦合模块的输出光强分布不平滑,呈多尖峰分布,尖峰位置对LD光束指向角敏感,随指向角、空间排布等因素的变化而变化,是多种因素综合作用的结果;具有尖峰结构的泵浦光场对振荡光横模结构有直接影响,泵浦光尖峰位置越居中,光强径向分布曲线在轴心处越凸起,振荡光光束质量越好,越凹陷,振荡光光束质量越差,在激光器设计中应有针对性地具体考虑应对措施。  相似文献   

10.
多线阵半导体激光器的单光纤耦合输出   总被引:4,自引:1,他引:3  
设计并研制了一种多线阵半导体激光器的高亮度光纤耦合输出模块.激光器芯片采用了分子束外延方法生长的宽波导、双量子阱结构AlGaAs/GaAs激光器外延材料,激光器模块采用6只准直的线阵半导体激光器,器件腔长为1.2mm,单个发光单元宽度为100μm,发光单元周期为500μm,单线阵器件包括19个发光单元,单线阵器件的连续输出功率为50W,每只单线阵器件的准直输出光束经过空间合束后再通过光束对称化变换实现了多线阵器件输出的高光束质量功率合成,采用平凸柱透镜实现了合束光束与400μm芯径、数值孔径0.22石英光纤的高效率耦合,整体耦合效率达到65%,最大耦合输出功率达到195W,光纤端面功率密度达到1.55×105W/cm2.  相似文献   

11.
扩芯光纤原理及其在光器件耦合中的应用   总被引:1,自引:0,他引:1  
介绍了两种可以增大单模光纤模场直径并出射准直平行光束的扩芯光纤(ECF)的原理和制作方法。分析了单模光纤熔接渐变折射率多模光纤法通过改变渐变折射率多模光纤的长度和自聚焦参量实现模场扩大缩小的原理,制作的扩芯光纤模场直径扩大到16.6μm,出射光束平行效果较好,轴向耦合容限比单模光纤扩大了近6倍。加热扩芯光纤则是通过控制加热温度和加热时间直接使单模光纤掺杂物质发生扩散,从而实现扩束和光束准直,模场直径达到15.4μm,横向、轴向耦合容限都比单模光纤有很大提高。因此扩芯光纤可以简化单模光纤的耦合对准过程,用来制作新型的单模光纤或掺铒光纤连接器,也可以用于其它光器件中与单模光纤的准直。  相似文献   

12.
赵士刚  苑立波 《光子学报》2007,36(2):234-238
设计了芯间距较小的特殊结构四芯光纤,可用于生成格子光场或用于制作光纤传感器.研究了在采用相干长度较短的LD光源的情况下,经过一段既弯曲又扭转的四芯光纤远程传输后的纤端光场干涉特性.基于叠加原理,出射光场可视为每个独立纤芯的多光源相干叠加和圆孔衍射调制共同作用的结果,推导了相应的理论公式,给出了四芯光纤远场干涉的理论与实验相一致的结果.对光纤弯曲所导致的光程差累积和偏振态衰变效应进行了分析和讨论,并给出了相应的实验结果.  相似文献   

13.
设计并研制了一种多线阵半导体激光器的高亮度光纤耦合输出模块.激光器芯片采用了分子束外延方法生长的宽波导、双量子阱结构AlGaAs/GaAs激光器外延材料,激光器模块采用6只准直的线阵半导体激光器,器件腔长为1.2 mm,单个发光单元宽度为100 μm,发光单元周期为500 μm,单线阵器件包括19个发光单元,单线阵器件的连续输出功率为50 W,每只单线阵器件的准直输出光束经过空间合束后再通过光束对称化变换实现了多线阵器件输出的高光束质量功率合成,采用平凸柱透镜实现了合束光束与400 μm芯径、数值孔径0.22石英光纤的高效率耦合,整体耦合效率达到65%,最大耦合输出功率达到195 W,光纤端面功率密度达到1.55×105 W/cm2.  相似文献   

14.
随着单管半导体激光器光纤耦合技术的不断发展,为了进一步提高多单管半导体激光器的输出功率,本文采用曲面空间排列方式对多个单管半导体激光器进行合束研究,使更多数量的单管半导体激光器耦合进入同一光纤中,获得更高的输出功率。文中利用ZEMAX光学设计软件进行仿真模拟,将34只波长为975 nm、输出功率为10 W的单管半导体激光器合束聚焦后耦合进芯径200 μm、数值孔径0.22的光纤中,获得耦合效率91.76%、输出功率312.03 W的激光系统。实验中,将17只单管半导体激光器耦合进芯径200 μm、数值孔径0.22的光纤中,在10.5 A的驱动电流下,输出功率为100.5 W,系统耦合效率为68.46%。  相似文献   

15.
长波红外量子级联激光器(QCL)具有波长设计灵活、体积小、寿命长等优点。目前单横模QCL较低的输出功率(1~3 W)是限制其应用的主要因素。光纤功率合束技术是提升输出功率的有效手段。然而由于长波红外波段缺少低传输损耗的玻璃光纤,使得高效率长波红外光纤功率合束的实现难度很大。本文研究了基于低损耗单模空芯光纤的长波红外激光功率合束技术。针对基横模长波红外QCL有源区尺寸大、发散角大的特点,设计了大数值孔径扩展光源双非球面准直镜,有效提高了单模光纤耦合效率。设计制备了无端面损耗的长波红外单模光纤束,光纤传输效率高达91.2%,实现了7.6~7.8μm波段QCL的高效率合束。当4个长波红外QCL的输出总功率为2.27 W时,采用所设计的光纤耦合光学系统及制备的4×1单模空芯光纤合束器获得了1.5 W的连续输出,总合束效率为66%。此外,测量得到单根单模长波红外光纤耦合输出光的光束质量因子M2为1.2,光强分布和光束质量因子均优于QCL的直接输出激光,说明空芯单模光纤具有一定的非高斯光束模式净化作用。合束光束的传输质量因子为2.6,依然具有较好的光束质量。本文所研究的光纤合束方式对QCL的输出波...  相似文献   

16.
高功率半导体激光器光纤耦合实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为进一步提高光纤耦合半导体激光器的输出功率,提出了一种多单管半导体激光器通过台阶分布、光束精密准直及自由空间合束实现高功率光纤耦合输出的方法,该方法具有结构简单、光学元件易于加工、耦合效率高等优点。采用这种方法对5只封装在次热沉上的单管半导体激光器开展了芯径100μm、数值孔径0.22多模光纤的耦合实验研究,当工作电流为7.0 A时,光纤连续输出功率为21.8 W,亮度为1.83 MW/(cm~2·sr),耦合效率为70.32%。  相似文献   

17.
穆丹丹  朱永田  张凯 《应用光学》2012,33(5):996-1001
光纤入射光束的角度和位置的变化对光纤出射光束的远场光强分布有较大影响。通过分析光纤出射光场的光强分布,研究了斜光束的偏轴角对光纤出射光场的影响。光纤耦合理论说明光纤的宏弯曲会使光纤内部模式相互耦合,根据这一原理设计一种能使光纤宏弯曲并以此来改善光纤出射场分布的机械扰模器。在实验中,对不同偏轴角入射及处于不同扰模程度的光斑进行中值滤波、高斯拟合等处理,得到光斑的径向光强分布曲线、高斯拟合度、不同出射焦比范围的能量变化等参数,以此分析机械扰模器的扰模效果。  相似文献   

18.
端面抽运耦合是高功率光纤激光器的常用耦合方式之一.在不考虑像差的情况下,采用高斯光束传输的ABCD定律,参照混合模系数M2的定义,研究了类高斯光束通过双透镜后腰斑和发散角的变化规律,设计了一种将LD尾纤输出的大功率多模激光耦合进双包层光纤的透镜耦合系统,针对透镜组通光孔径、透镜加工要求、系统尺寸等影响耦合系统效率的各种因素作了简要分析.该系统已成功运用于光纤激光器实验,验证了设计方案的可行性.  相似文献   

19.
《发光学报》2021,42(1)
多单管合束技术是获得高输出功率密度半导体激光器的重要方法,但其存在封装方式单一、体积大等问题,难以满足更高功率密度和较好光束质量的需求。本文设计了一种多单管半导体激光器堆叠排布的封装结构,通过将多个单管半导体激光器垂直封装在辅助热沉之间,使得器件更加小型化,在充分利用单管半导体激光器优势的同时,既增加了单管半导体激光器的散热通道,又实现了在体积不增加的基础上提高输出功率。通过ZEMAX软件对3个单管进行了空间合束模拟,将光束耦合进芯径200μm、数值孔径0.22的光纤中,可以达到28.6 W的激光输出,耦合效率为95%。  相似文献   

20.
基于镜像分析的空心导管光束整形原理研究   总被引:2,自引:1,他引:1  
贾文武  汪岳峰  黄峰 《光子学报》2008,37(9):1756-1759
基于镜像原理,对空心导管LD面阵光束整形的原理和输出光场的特点进行了分析,并对LD面阵光束经过空心导管后的光强分布进行了仿真.发现空心导管将LD不同角度范围的光束进行分割,并在出射面内叠加的光束整形原理.通过仿真得出由于发散角较大以及各分割角度范围光束角度不连续,使出射面上的平顶光束发生畸变,只适于泵浦薄激光介质的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号