首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the work done on a transient soft X-ray laser (SXRL) beam to deliver a proper extreme UV irradiation source for applications. The same optical tool was first demonstrated on a quasi stationnary state (QSS) soft X-Ray laser at the PALS Institute in Prague. The problem set by the transient soft X-Ray laser developed by the LIXAM at the LULI installation in Palaiseau is more crucial, first because the beam spatial profile is more irregular secondly because high repetition rate soft X-ray laser facilities in the future are based on this SXRL type. The spots obtained show a 20 micron average diameter and a rather homogeneous and smooth profile that make them a realistic irradiation source to interact with targets requiring relatively high fluence (near 1 J/cm2) or intensity (near 1011 W/cm2) in the extreme UV domain.  相似文献   

2.
We report the pyroelectric power generation of a relaxor ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (PMN–PT) single crystal. For a temperature variation rate of 0.5 K/s, the PMN–PT generated a closed-circuit current of 10 nA and an open-circuit voltage of 1.1 V at room temperature. The pyroelectric current and voltage of the PMN–PT single crystal were proportional to the temperature variation rate and were sharply enhanced near the structural phase-transition temperature. Additionally, the PMN–PT pyroelectric generator produced stable power for excessive thermal cycling and was highly sensitive to random thermal fluctuations. Our results indicate the potential importance of PMN–PT for high-power pyroelectric generator applications.  相似文献   

3.
The interaction of ultrashort laser pulses with solid state targets is studied concerning the production of short X-ray pulses with photon energies up to about 10 keV. The influence of various parameters such as pulse energy, repetition rate of the laser system, focusing conditions, the application of prepulses, and the chirp of the laser pulses on the efficiency of this highly nonlinear process is examined. In order to increase the X-ray flux, the laser pulse energy is increased by a 2nd multipass amplifier from 750 μJ to 5 mJ. By applying up to 4 mJ of the pulse energy a X-ray flux of 4×1010 Fe K α photons/s or 2.75×1010 Cu K α photons/s are generated. The energy conversion efficiency is therefore calculated to η Fe≈1.4×10−5 and η Cu≈1.0×10−5. The X-ray source size is determined to 15×25 μm2. By focusing the produced X-rays using a toroidally bent crystal a quasi-monochromatic X-ray point source with a diameter of 56 μm×70μm is produced containing ≈104 Fe K α1 photons/s which permits the investigation of lattice dynamics on a picosecond or even sub-picosecond time scale. The lattice movement of a GaAs(111) crystal is shown as a typical application.  相似文献   

4.
Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 °C/min. An increase in the Curie temperature Tc=51 °C (for pure TGS, Tc=48.5 °C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.  相似文献   

5.
This paper presents the effect of XeCl laser irradiation on Nd:YAG single crystal samples with various number of pulses at different repetition rates and laser fluences. Effects of the irradiation on the optical and structural properties of the crystal are analyzed by UV–vis-NIR spectroscopy. Annihilation of some point defects of the crystal structure is observed following laser irradiation at a fluence of 100 mJ cm−2 with 100 and 500 pulses. Increasing the laser fluence and pulse numbers leads to saturation and new defects are found to be formed in the crystal. Additional absorption spectra of the irradiated samples show that oxygen vacancies in the Nd:YAG crystals are removed during the low-dose irradiation. The laser irradiation is compared to the thermal annealing process for Nd:YAG crystal modification. Additional absorption spectrum of an annealed sample reveals that induced negative absorption band at 236 nm is correlated with the annihilation of the oxygen vacancy center. Our results also demonstrate that XeCl laser treatment has several advantages upon annealing at high temperatures in the Nd:YAG crystal quality improvement. Thus, the present work can give a new approach to modify Nd:YAG crystals to be used in a wide variety of solid-state laser engineering.  相似文献   

6.
激光等离子体球面晶体光谱成像   总被引:4,自引:1,他引:3       下载免费PDF全文
 利用自聚焦原理,研制了一种新型的球面弯晶谱仪。晶体分析器采用云母材料,其弯曲半径为380 mm,布拉格角为51°。利用成像板接收光谱信号,其有效面积为30 mm×80 mm,从等离子体源经晶体到成像板的光程长为980 mm。物理实验在中国工程物理研究院激光聚变研究中心20 J激光装置上进行,入射激光能量为6.78 J,成像板获得了铝激光等离子体X射线的光谱空间分辨信号。球面云母弯晶谱仪的光谱分辨率达到1 000~1 500,在相同环境放置的PET平晶的光谱分辨率为50~100。结果表明:球面弯晶具有较高的光谱分辨率和信噪比,适合于激光等离子体X射线的光谱学研究。  相似文献   

7.
Results of continuous spectral monitoring of indoor gamma background are reported for seismological application in one fault zone of the Western Caucasus. Background count rates were recorded every 5 min since 2004. Two detectors (a scintillation crystal CsI(Tl), 200 mm × 150 mm in a low background metal screen and a NaI(Tl) detector, 90 mm × 90 mm outside of the screen) were used. Various intervals of energy of gamma rays, for example, (2.50–3.40) MeV, (1.70–2.00) MeV, (1.35–1.55) MeV and others were analyzed. Averages for all measurements as well as seasonal and hourly changes of count rate of detectors were obtained. As an example, for the interval (1.70–2.00) MeV a minimal monthly count rate of detector CsI(Tl) was observed in June, and the maximal monthly count rate of detector NaI(Tl) was observed in July. Factors of correlation between different intervals of energy of gamma rays were also investigated. Strong changes of annual, monthly and daily factors were obtained.In each daily curve of all intervals of energy of gamma rays, the first Fourier harmonic was calculated. The deviations from 3σ (“splash”), which are upward or downward from the first harmonic, were compared with the seismological data. It was possible to correlate the low background dates of “splashes” with the dates of regional earthquakes through 9 ± 1 days.Change of ratio of count rate in different intervals of energy of gamma rays can be used to study processes of preparation of earthquakes.The factor of correlations between intervals (2.50–3.40) MeV and (1.70–2.00) MeV increased to almost 1.00 close to earthquakes. This effect was obtained in low background screen.Connection of the gamma data with the meteorological data was not obtained.  相似文献   

8.
Circularly polarized acoustically induced light gyration (AILG) in nickel nanoparticles (NiNPs) attached to indium tin oxide (ITO) substrates was observed to be enhanced by nanosecond UV laser excitation at a wavelength in the surface plasmon resonance region. The AILG was observed during exposure to two acoustical waves with frequencies of 2 and 4 MHz and power densities of up to 5 W/cm2. The maximum value of the AILG observed for NiNPs of average size ca. 8.7 nm, attached to an ITO substrate was about 2.8°/mm without UV-light illumination. Additional irradiation by 5 ns pulse UV laser light (λ: 337 nm) at the surface plasmon resonance region was found to favour the additional enhancement of the AILG up to 11°/mm. The effect was optimized at a temperature of 120 K. This increase was not observed when the size of NiNPs was 16.8 nm.  相似文献   

9.
A quasi-monolithic second-harmonic-generation ring resonator assembled with miniaturized components is presented. The ring contains a 10-mm-long bulk periodically poled lithium niobate crystal for second-harmonic generation, four plane mirrors and two gradient-index lenses. All parts are mounted on a glass substrate with an overall size of 19.5 mm×8.5 mm×4 mm. As pump source a broad-area laser diode operated in an external resonator with Littrow arrangement is utilized. This external cavity diode laser provides near diffraction limited, narrow-bandwidth emission with an optical output power of 450 mW at a wavelength of 976 nm. Locking of the diode laser emission to the resonance frequency of the ring cavity was achieved by an optical self-injection locking technique. With this setup more than 126 mW of diffraction-limited blue light at 488 nm could be generated. The opto–optical conversion efficiency was 28% and a wall plug efficiency better than 5.5% could be achieved.  相似文献   

10.
ZnO nanorod arrays were grown on quartz slices in the aqueous solution of zinc acetate and hexamethylenetetramine at 90 °C. Then ZnO:Mg shells were epitaxially grown on the nanorods to form core/shell structures in the aqueous solution of zinc acetate, magnesium acetate and hexamethylenetetramine at the same temperature. Effects of the shells and UV laser beam irradiation on the crystal structure and photoluminescence properties of ZnO nanorods were studied. ZnO:Mg shells suppress the green emission and enhance the UV emission intensity of the nanorods by 38 times. Enhancement of the UV emission depends on the Mg content in the shells. Short time UV laser beam irradiation could improve ZnO nanorod emission efficiently. The UV emission intensity of ZnO nanorods is enhanced by 71 times by capping and subsequent UV laser beam irradiation.  相似文献   

11.
Fabrication and results of high‐resolution X‐ray topography characterization of diamond single‐crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high‐heat‐load X‐ray crystal optics are reported. The plates were fabricated by laser‐cutting of the (111) facets of diamond crystals grown using high‐pressure high‐temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront‐preserving high‐heat‐load crystal optics. Wavefront characterization was performed using sequential X‐ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking‐curve topography. The variations of the rocking‐curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.  相似文献   

12.
A continuous-wave (CW) YAG laser (power: 0.75–0.9 J/s, irradiation time: 15 s–15 min) with a wavelength of 1064 nm is irradiated to 11.1Sm2O3·44.4BaO·44.4B2O3 glass, and the formation of β-BaB2O4 (β-BBO) crystalline dots with a diameter of 30–150 μm is confirmed from micro-Raman spectra. β-BBO crystals with around 200 μm length grow towards the interior of the glass. The incorporation of Sm3+ into β-BBO crystalline dots is suggested from micro-Raman and fluorescence spectra. The second harmonic generation is detected from the array (10×10=100 dots) of β-BBO crystalline dots, indicating that each crystalline dot formed by YAG laser irradiation is a nonlinear optical crystal. CW YAG laser irradiation to glass with Sm3+ ions is a nice technique for a spatially controlled crystal growth.  相似文献   

13.
In this paper results of scintillation properties measurements of pure and Ce3+-doped strontium fluoride crystals are presented. We measure light output, scintillation decay time profile and temperature stability of light output. X-ray excited luminescence outputs corrected for spectral response of monochromator and photomultiplier for pure SrF2 and SrF2-0.3 mol% Ce3+ are approximately 95% and 115% of NaI–Tl emission output, respectively. A photopeak with a 10% full width at half maximum is observed at approximately 84% the light output of a NaI–Tl crystal after correction for spectral response of photomultiplier, when sample 10 × 10 mm of pure SrF2 crystal is excited with 662 keV photons. Corrected light output of SrF2-0.3 mol% Ce3+ under 662 keV photon excitation is found at approximately 64% the light output of the NaI–Tl crystal.  相似文献   

14.
In the current work, the etching selectivity of the AgInSbTe phase-change film in laser thermal lithography is reported for the first time. Film phase change induced by laser irradiation and etching selectivity to crystalline and amorphous states in different etchants, including hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, sodium hydroxide, sodium sulfide, ammonium sulfide and ammonium hydroxide, are investigated. The results indicated that ammonium sulfide solvent (2.5 mol/L) had excellent etching selectivity to crystalline and amorphous states of the AgInSbTe film, and the etching characteristics were strongly influenced by the laser power density and laser irradiation time. The etching rate of the crystalline state of the AgInSbTe film was 40.4 nm/min, 20 times higher than that of the amorphous state under optimized irradiation conditions (power density: 6.63 mW/μm2 and irradiation time: 330 ns), with ammonium sulfide solvent (2.5 mol/L) as etchant. The step profile produced in the selective etching was clear, and smooth surfaces remained both on the step-up and step-down with a roughness of less than 4 nm (10×10 μm). The excellent performance of the AgInSbTe phase-change film in selective etching is significant for fabrication of nanostructures with super-resolution in laser thermal lithography.  相似文献   

15.
ARDESIA, a four-channel X-ray spectrometer based on silicon drift detectors (SDDs), is presented. It has been developed for synchrotron applications targeting especially X-ray fluorescence (XRF) and X-ray absorption spectroscopy (XAS) with good energy resolution at high count rates (a few Mcps per second). The main target applications are XRF and XAFS techniques. The system features a 2 × 2 monolithic array of 5-mm-pitch SDDs cooled with a double Peltier scheme and coupled to a four-channel CUBE charge preamplifier. Different digital pulse processors allowing operation in Mcps per second count rates are employed. The results of preliminary characterization measurements performed at both the LNF DAΦNE-Light DXR1 beamline and the ESRF LISA BM-08 are reported, in particular, XRF measurements on low atomic number elements (down to the Carbon K-line, 270 eV) and extended X-ray absorption fine structure of trace materials in pyrite.  相似文献   

16.
《Current Applied Physics》2010,10(4):1221-1226
Good quality ammonium dihydrogen phosphate single crystals have been grown by: (i) Sankaranarayanan–Ramasamy (SR) method and (ii) SR method with slotted ampoule. The grown crystals were subjected to UV–Vis spectroscopy, high-resolution X-ray diffractometer, dielectric, piezoelectric and laser damage threshold studies. Compared to the (1 0 0) plane of the conventional method grown ADP crystal and 〈1 0 0〉 directed SR method grown ADP crystal, the crystal grown by SR method with slotted ampoule has higher growth rate, higher optical transparency, high crystalline perfection, low dielectric loss, high piezoelectric charge coefficient and high laser damage threshold due to diffusion of segregated impurities away from the growing crystal in the slotted ampoule growth.  相似文献   

17.
A coherent UV passively Q-switched diode pumped Nd:GdVO4 laser source is proposed. During pumping of the β-BBO crystal a stable light with power 0.6 W with wavelength 532 nm and pulse duration 9 ns at frequency repetition 16 kHz was applied. The output UV light has a power about 79 mW at wavelength 266 nm during diode-pumping with 8 W incident light.  相似文献   

18.
A nonlinear optical (NLO) sodium 4-methyl-3-nitrobenzoate monohydrate (Na4M3N) single crystal was synthesized and grown by the slow cooling solution growth method using an ethanol-water (1:1) mixed solvent. Powder X-ray diffraction (PXRD) reveals the crystallinity of Na4M3N compound. The Na4M3N crystal was estimated with a single crystal XRD instrument and it was identified to be in the centrosymmetric space group (P21/c) having a monoclinic system. The vibrational, proton (1H) and carbon (13C) NMR spectral analysis substantiates the functional groups, hydrogen and carbons in the synthesized compound. The Hirshfeld surfaces analysis was executed to know the different type of interactions present in the crystal. From the UV–vis spectrum, the optical band gap and cut-off wavelength of the Na4M3N crystal are endowed to be 5.06 eV and 254 nm respectively. The Na4M3N crystal was subjected to a thermogravimetric as well as differential thermal analysis for discerning the thermal characteristics. The LDT value of crystal was endowed to be 5.8 GW/cm2 using Nd: YAG laser and the value is superior to that of KDP and Urea. The emission region of the compound was identified by the photoluminescence emission spectrum. The crystalline quality was again confirmed by lifetime measurements. The thermo-optic coefficient (dn/dt) was determined to be –3.5 × 10−5 K−1. The reverse saturable absorption observed by third-order NLO studies dictates the suitability for optical limiting applications. Vickers microhardness test showed that Na4M3N crystal was a soft material. The average etch pit density (3.2 × 103 cm−2) was determined from chemical etching studies. The complex dielectric constant, electric modulus and electrical conductivity values were measured as a function of frequency to get information on the conduction mechanisms.  相似文献   

19.
The appearance of intense terahertz sources such as quantum cascade laser and free electron laser opens up new opportunities for 2D imaging. Though microbolometer and pyroelectric arrays are promising recorders, they are of small size and cannot be used when wide-field imaging in the longwave region is required. We applied for terahertz imaging 3″ × 3″ and 6″ × 6″ Macken Instruments Inc. “thermal image plates”, a set of thermal sensitive phosphor screens operating in a room temperature environment. The Novosibirsk free electron laser was used as a source of radiation. We have found that the response of thermal image plate is linear until the relative quenching is less than 60% of the initial luminescence intensity. The response curve follows the Seitz–Mott law. The threshold sensitivity was found to be 100 mW/cm2 at 1.5 THz and 40 mW/cm2 at 2.3 THz. Interferograms, holograms, and terahertz beam spatial distributions recorded in the spectral range of 1.2–2.5 THz are given as examples.  相似文献   

20.
Pure and 0.1 mol% Xylenol orange (XO) doped Imidazolium L-tartrate (IMLT) nonlinear optical (NLO) single crystals were grown using Sankaranarayanan–Ramasamy (SR) method of uniaxial solution crystallization technique. The pure IMLT crystal is 100 mm in length and 15 mm in diameter. The doped IMLT crystal is 25 mm in length and 10 mm in diameter. UV–Vis-NIR spectrum shows that the pure and XO doped IMLT crystals' cut off wavelength is 235 nm. High-resolution X-ray diffraction (HRXRD) measurement and birefringence interferometry confirm that the SR method grown crystal has good crystalline perfection and optical homogeneity. The wavelength dependent refractive index and piezoelectric d33 coefficient were measured. The difference refractive index (Δn) of (100) plane in parallel and perpendicular directions shows a strong dependence on wavelength. The dielectric constant, hardness and SHG conversion efficiency were also increased as a result of XO dye doping in IMLT crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号