首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
According to first-principles density functional calculations,we have investigated the magnetic properties of Mn-doped GaN with defects,Ga 1-x-y V Gx Mn y N 1-z-t V Nz O t with Mn substituted at Ga sites,nitrogen vacancies V N,gallium vacancies V G and oxygen substituted at nitrogen sites.The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism.The ground state is found to be well described by a model based on a Mn 3+-d 5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions.The effect of defects on ferromagnetic coupling is investigated.It is found that in the presence of donor defects,such as oxygen substituted at nitrogen sites,nitrogen vacancy antiferromagnetic interactions appear,while in the case of Ga vacancies,the interactions remain ferromagnetic;in the case of acceptor defects like Mg and Zn codoping,ferromagnetism is stabilized.The formation energies of these defects are computed.Furthermore,the half-metallic behaviours appear in some studied compounds.  相似文献   

2.
姜良宝  刘宇  左思斌  王文军 《中国物理 B》2015,24(2):27503-027503
Ferromagnetism is investigated in high-quality Cu-doped A1 N single crystal whiskers.The whiskers exhibit roomtemperature ferromagnetism with a magnetic moment close to the results from first-principles calculations.High crystallinity and low Cu concentrations are found to be indispensable for high magnetic moments.The difference between the experimental and theoretical moment values is explored in terms of the influence of nitrogen vacancies.The calculated results demonstrate that nitrogen vacancies can reduce the magnetic moments of Cu atom.  相似文献   

3.
Using Co2O3 as the Co source, doped cerium oxide thin films with the composition of Ce0.97C00.03O2-δ (CCO) are deposited on Si(111) and glass substrates by pulse laser deposition technique. X-ray diffraction reveals that CCO films with (111) preferential orientation are grown on Si, while the fihn on glass is polycrystalline with nanocrystal. X-ray photoelectron spectroscopy shows that the (Jo displaces the (;e atom and exists in high spin state rather than low spin state, which contributes to the room-temperature ferromagnetism confirmed by vibration sample magnetometer. I~ilms on Si and glass are different in ferromagnetism, which is believed to be induced by different film microstructures. Based on these results, the possible ferromagnetism in this insulating film is discussed. Anyway, successful fabrication of CCO films with room-temperature ferromagnetism on Si substrates is of great importance in both technological and theoretical aspects.  相似文献   

4.
A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn^2+ for Zn^2+ without additional acceptor doping. The substitution of N for O (NO^-) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn^2+ and Mn^3+ via NO^-, The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration.  相似文献   

5.
We investigate the effect of N2 addition during sputtering on the microstructure and magnetic properties of FePt-Al2O3 thin films. The texture of FePt phase in FePt-Al2O3 thin films changes from (111) to a more random orientation by N2 addition during sputtering. The ordering temperature of FePt phase reduces about 100℃ with appropriate N2 partial pressure. A larger coercivity of 6.0 × 10^5 Aim is obtained with N2 partial pressure about 15%. Structural analysis reveals that a small quantity of Fe3N phase forms during sputtering and the release of N atoms during the post annealing induces a large number of vacancies in the films, which benefits to the transformation of FePt phase from fcc to fct.  相似文献   

6.
Defects in ZnO films grown by radio-frequency reactive magnetron sputtering under variable ratios between oxygen and argon gas have been investigated by using the monoenergetie positron beam technique. The dominate intrinsic defects in these ZnO samples are O vacancies (Vo) and Zn interstitials (Zni) when the oxygen fraction in the O2/Ar feed gas does not exceed 70% in the processing chamber. On the other hand, zinc vacancies are preponderant in the ZnO films fabricated in richer oxygen environment. The concentration of zinc vacancies increases with the increasing O2 fraction. For the oxygen fraction 85%, the number of zinc vacancies that could trap positrons will be smaller. It is speculated that some unknown defects could shield zinc vacancies. The concentration of zinc vacancies in the ZnO films varies with the oxygen fraction in the growth chamber, which is in agreement with the results of photolurninescence spectra.  相似文献   

7.
Motivated by recent experiments, we investigate structural, electronic, and magnetic properties of tetragonal FeSe with Fe vacancies using the state-of-the-art first-principles method. We show that Fe vacancies tend to stay in the same one of the two sublattices and thus induce ferromagnetism in the ground-state phase. Our calculated net moment is in good agreement with the experimental data available. Therefore, the ferromagnetism observed in tetragonal FeSe thin films is explained. It could be made controllable soon for spintronic applications.  相似文献   

8.
路战胜  马东伟  张静  徐国亮  杨宗献 《中国物理 B》2012,21(4):47505-047505
The magnetism driven by cation defects in undoped CeO2 bulk and thin films is studied by the density functional theory corrected for on-site Coulomb interactions (DFT+U) with U = 5 eV for the Ce4f states and U = 7 eV for the O2p states. It is found that the Ce vacancies can induce a magnetic moment of the -4 gB/supercell, which arises mainly from the 2p hole state of the nearest neighbouring O atom (-1μB on per oxygen) to the Ce vacancy. The effect of the methodology is investigated, indicating that U = 7 eV for the O2p state is necessary to obtain the localized O2p hole state in defective ceria with cation vacancies.  相似文献   

9.
TiO2-δ nanoparticles are synthesized by the sol-gel method and annealed under different reducing atmosphere. The x-ray diffraction patterns show that anatase is the dominant phase with small amounts of the futile phase of TiO2-δ for all the samples. Magnetic measurements indicate that the samples annealed in reducing atmosphere exhibit unprecedented room-temperature ferromagnetism, in particular, the saturation magnetization Ms is up to about 8.6 × 10^-3 emu/g for the sample annealed in H2/Ar mixture. Analysis of the x-ray photoelectron spectroscopy spectra for the samples processed under different conditions indicates that the amounts of Ti^3+ or Ti^2+ cations, namely, the concentration of oxygen vacancies, increase with intensifying reducing atmosphere during processing, which shows that ferromagnetism in this material strongly depends on the concentration of oxygen vacancies. The relationships between the ferromagnetism and the crystal structure as well as the grain size in this material are also discussed.  相似文献   

10.
TiO2-xNx thin films are deposited onto Si(100) and quartz substrates by arf magnetron sputtering method using a titanium metal disc as a target in Ar, N2, and 02 atmospheres. The substrate temperature is kept at 300℃. The O2 and Ar gas flow rates are kept to be constants and the N gas flow rate is varied. TiO2-xNx films with different N contents are characterized by x-ray diffraction and x-ray photoelectron spectroscopy. The results indicate that the TiO2-xNx thin films can be obtained at 13% N and 15% N contents in the film, and the films with mixed TiO2 and TiN crystal can be obtained at 13% N and 15% N contents in the film. In terms of the results of x-ray photoelectron spectroscopy, N ls of β-N (396 eV) is the main component in the TiO2-xNx thin films. Because the energy level of β-N is positioned above the valence-band maximum of TiO2, an effective optical-energy gap decreases from 2.8 eV (for pure TiO2 film deposited by the same rf sputtering system) to 2.3 eV, which is verified by the optical-absorption spectra.  相似文献   

11.
Because of their possible applications in spintronic and optoelectronic devices, GaN dilute magnetic semiconductors (DMSs) doped by rare-earth (RE) elements have attracted much attention since the high Curie temperature was obtained in RE-doped GaN DMSs and a colossal magnetic moment was observed in the Gd-doped GaN thin film. We have systemically studied the GaN DMSs doped by RE elements (La, Ce–Yb) using the full-potential linearized augmented plane wave method within the framework of density functional theory and adding the considerations of the electronic correlation and the spin-orbital coupling effects. We have studied the electronic structures of DMSs, especially for the contribution from f electrons. The origin of magnetism, magnetic interaction and the possible mechanism of the colossal magnetic moment were explored. We found that, for materials containing f electrons, electronic correlation was usually strong and the spin–orbital coupling was sometimes crucial in determining the magnetic ground state. It was found that GaN doped by La was non-magnetic. GaN doped by Ce, Nd, Pm, Eu, Gd, Tb and Tm are stabilized at antiferromagnetic phase, while GaN doped by other RE elements show strong ferromagnetism which is suitable materials for spintronic devices. Moreover, we have identified that the observed large enhancement of magnetic moment in GaN is mainly caused by Ga vacancies (3.0μB per Ga vacancy), instead of the spin polarization by magnetic ions or originating from N vacancies. Various defects, such as substitutional Mg for Ga, O for N under the RE doping were found to bring a reduction of ferromagnetism. In addition, intermediate bands were observed in some systems of GaN:RE and GaN with intrinsic defects, which possibly opens the potential application of RE-doped semiconductors in the third generation high efficiency photovoltaic devices.  相似文献   

12.
金红石TiO_2晶体先在真空中进行退火处理,随后在1173 K的氧气中进行不同时间(2 h、5 h、8 h)的热处理.理论上,通过Doppler程序计算了晶体中存在单空位、双空位和间隙O原子时的正电子湮没寿命.实验上,利用正电子湮没寿命谱仪、符合多普勒能谱仪和超导量子干涉仪分别表征了氧气退火后晶体内部的缺陷结构和常温铁磁性.分析结果得出:真空退火晶体的常温铁磁性主要与O空位的存在相关联;而经过氧气退火后,虽然极大地减少了氧空位,但晶体中却产生了大量的Ti双空位,这使得晶体的常温铁磁性有所增加.  相似文献   

13.
We report the anatase titanium dioxide(101) surface adsorption of sp~3-hybridized gas molecules,including NH_3,H_2O and CH_4,using first-principles plane-wave ultrasoft pseudopotential based on the density functional theory.The results show that it is much easier for a surface with oxygen vacancies to adsorb gas molecules than it is for a surface without oxygen vacancies.The main factor affecting adsorption stability and energy is the polarizability of molecules,and adsorption is induced by surface oxygen vacancies of the negatively charged center.The analyses of state densities and charge population show that charge transfer occurs at the molecule surface upon adsorption and that the number of transferred charge reduces in the order of N,O and C.Moreover,the adsorption method is chemical adsorption,and adsorption stability decreases in the order of NH_3,H_2O and CH_4.Analyses of absorption and reflectance spectra reveal that after absorbed CH_4 and H_2O,compared with the surface with oxygen vacancy,the optical properties of materials surface,including its absorption coefficients and reflectivity index,have slight changes,however,absorption coefficient and reflectivity would greatly increase after NH_3 adsorption.These findings illustrate that anatase titanium dioxide(101) surface is extremely sensitive to NH_3.  相似文献   

14.
We had prepared Mn-doped ZnO and Li, Mn codoped-ZnO films with different concentrations using spin coating method. Crystal structure and magnetic measurements demonstrate that the impurity phases (ZnMnO3) are not contributed to room temperature ferromagnetism and the ferromagnetism in Mn-doped ZnO film is intrinsic. Interesting, saturated magnetization decreases with Mn or Li concentration increase, showing that some antiferromagnetism exists in the samples with high Mn or Li concentration. In addition, Mn0.05Zn0.95O film annealed in vaccum shows larger ferromagnetism than the as-prepared sample and more oxygen vacancies induced by annealing in reducing atmosphere enhance ferromagnetism, which supports the bound magnetic polaron model on the origin of room temperature ferromagnetism.  相似文献   

15.
Vacancy-induced magnetism in perovskite SrTiO3 is investigated by ab initio calculations and magnetic measurements. The calculations of the generalized gradient approximation (GGA), the local density approximation (LDA) and the local density approximation with on-site effect U (LDA+U) methods show that stoichiometric SrTiO3 is nonmagnetic. The GGA calculated results indicate that Ti or O vacancy could induce magnetism rather than Sr vacancy. The LDA and LDA+U calculations show that the Ti vacancy could induce magnetism, while Sr and O vacancies couldn't. The experimental results confirm that SrTiO3 nanocrystalline powders exhibit room-temperature ferromagnetism (FM) and the magnetic moment results from cation vacancies.  相似文献   

16.
The role of defects in the room temperature ferromagnetism of the Co–ZnO based diluted magnetic semiconductor (DMS) was investigated by co-doping the DMS with Na. The structure characterizations indicate that both Na and Co ions enter into the ZnO lattice without the formation of secondary phase. The oxygen vacancy of ZnCoNaO increased while the carrier concentration decreased compared with that of ZnCoO, leading to the enhancement of the ferromagnetic property in the ZnCoNaO. The observed ferromagnetism introduced by Na ions is attributed to the exchange interaction via the electron trapped oxygen vacancies coupled with the magnetic Co ions.  相似文献   

17.
邱东江  王俊  丁扣宝  施红军  郏寅 《物理学报》2008,57(8):5249-5255
以NH3为掺N源,采用电子束反应蒸发技术生长了Mn和N共掺杂的Zn1-xMnxO:N薄膜,生长温度为300℃,然后在O2气氛中400℃退火0.5 h.X射线衍射测量表明,Zn0.88Mn0.12O(Mn掺杂)薄膜或Zn0.88Mn0.12O:N(Mn和N共掺杂)薄膜仍具有单一晶相纤锌矿结构,未检测到杂质相 关键词: ZnO薄膜 Mn和N共掺杂 电学特性 磁特性  相似文献   

18.
The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the plasma annealing post treatment. TiN(002) peak shifts toward low angle direction and TiN(111) peak disappears after the post treatment. The lattice expansion and peak shift are mainly ascribed to the reduction of nitrogen vacancies in films. The magnetism was suppressed in as-prepared sample due to the pinning effect of the nitrogen vacancies at defect sites or interface. The magnetism can be activated by the plasma implantation along with nitrogen vacancies reduce. The decrease of nitrogen vacancies leads to the enhancement of ferromagnetism.  相似文献   

19.
《Current Applied Physics》2014,14(6):905-908
Monodisperse indium oxide (In2O3) nanoparticles (NPs) with the average diameter of 11 nm were prepared by a solvothermal method. The In2O3 NPs were characterized by X-ray diffraction, Raman and transmission electron microscopy. The intrinsic nature of ferromagnetism in In2O3 NPs has been established with the experimental observation of magnetic hysteresis loop. Photoluminescence and UV–visible studies were employed to evidence the presence of oxygen vacancies and revealed that the oxygen vacancies contribute to the ferromagnetism. The origin of ferromagnetism in In2O3 NPs may be due to exchange interactions among localized electron spin moments resulting from oxygen vacancies.  相似文献   

20.
In this paper, we report the observation of intrinsic room temperature ferromagnetism in pure La2O3 nanoparticles. Magnetism measurement indicates that all of the samples exhibit room temperature ferromagnetism and the saturation magnetization for the samples decreases with the increase in annealing temperature from 700 to 1,000 °C. X-ray photoelectron spectroscopy identifies the presence of oxygen vacancies in the La2O3 nanoparticles. The fitting results of the O 1s spectrum indicate that the variation of the oxygen vacancy concentration is in complete agreement with the change of the saturation magnetization. It is also found that the saturation magnetization of the La2O3 nanoparticles can be tuned by post-annealing in argon or oxygen atmosphere. These results suggest that the oxygen vacancies are largely responsible for the room temperature ferromagnetism in pure La2O3 nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号