首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
Hole-net structure silicon is fabricated by laser irradiation and annealing, on which a photoluminescence (PL) band in a the region of 650--750~nm is pinned and its intensity increases obviously after oxidation. It is found that the PL intensity changes with both laser irradiation time and annealing time. Calculations show that some localized states appear in the band gap of the smaller nanocrystal when Si=O bonds or Si--O--Si bonds are passivated on the surface. It is discovered that the density and the number of Si=O bonds or Si--O--Si bonds related to both the irradiation time and the annealing time obviously affect the generation of the localized gap states of hole-net silicon, by which the production of stimulated emission through controlling oxidation time can be explained.  相似文献   

2.
A high-power all-fiber single-frequency polarization-maintained(PM)laser operating at 1 083 nm is demonstrated using a master oscillator power amplifier(MOPA)structure.The seed source of this MOPA laser system is an in-house-built ring-cavity fiber oscillator.Four-stage amplification configuration is employed, in which the maximal output power of the main amplifier is 90.4 W,corresponding to a conversion efficiency of 72.5%.The polarization extinction ratio of the output light is 13 dB.The amplified spontaneous emission is suppressed by a factor of over 25 dB,and no stimulated Brillouin scattering effect is observed when a large-mode-area and high absorption coefficient PM gain fiber is employed.  相似文献   

3.
Low-dimensional structures formed by irradiation of laser   总被引:4,自引:0,他引:4       下载免费PDF全文
Some kinds of low-dimensional nanostructures can be formed by irradiation of laser on the pure silicon sample and the SiGe alloy sample. This paper has studied the photoluminescence (PL) of the hole-net structure of silicon and the porous structure of SiGe where the PL intensity at 706nm and 725nm wavelength increases obviously. The effect of intensity-enhancing in the PL peaks cannot be explained within the quantum confinement alone. A mechanism for increasing PL emission in the above structures is proposed, in which the trap states of the interface between SiO2 and nanocrystal play an important role.  相似文献   

4.
We report fabrication of low-dimensional structures in air by a pulsed laser on SiGe alloy samples in which different oxide structures are formed by laser irradiation and annealing treatment. The micro-structures on SiGe are more complex than those on Si. A series of photolumineseence (PL) emission is observed due to various trap states at the SiGe-SiO2 interface formed under different preparing conditions. The peak centre of PL emission exhibits red=shift from Si to SiGe because of narrower gap. A model for explaining the PL emission is proposed in which the trap states of the interface between some oxide and SiGe play an important role.  相似文献   

5.
We report the properties of a compact diode-pumped continuous-wave Nd:GdV04 laser with a linear cavity and different Nd-doped laser crystals. In a 0.2at.% Nd-doped Nd:GdVO4 laser, 1.54 W output laser power is achieved at 912nm wavelength with a slope efficiency of 24.8% at an absorbed pump power of 9.4W. With 0.3at.% Nd-doping concentration, we can obtain the either single-wavelength emission at 1064nm or 912nm or the dual-wavelength emission at 1064nm and 912nm by controlling the incident pump power. From an incident pump power of 11.6 W, the 1064nm emission between ^4Fa/2 and ^4I11/2 is suppressed completely by the 912nm emission between ^4Fa/2 and ^4I9/2. We obtain 670 mW output of the 912nm single-wavelength laser emission with a slope efficiency of 5.5% by taking an incident pump power of 18.4 W. Using a Nd:GdV04 laser with 0.4at.% Nd-doping concentration, we obtain either the single-wavelength emission at 1064nm or the dual-wavelength emission at both 1064nm and 912nm by increasing the incident pump power. We observe a strong competition process in the dualavelength laser.  相似文献   

6.
The fluorescence spectrum and thermal properties of the mixed crystal Nd:Luo.gvLa~.o1VO4 are determined. The strongest emission peak located at 1065.6 nm had a full width at half maximum (FWHM) of 2.1 nm. Continuous-wave (CW) laser performance is demonstrated by a compact planar planar cavity that is end- pumped by a diode laser. The laser output characteristics are investigated by using output couplers with different transmissions. A maximum CW output power of 8.09 W was obtained at an incident pump power of 19.4 W, which corresponds to an optical-to-optical conversion efficiency of 41.7% and a slope efficiency of 54.6%. The dependence of optimum transmission on pump power is calculated theoretically and is found to be consistent with experimental results.  相似文献   

7.
A pulsed InGaAsP-Si hybrid laser is fabricated using metal bonding. A novel structure in which the optical coupling and metal bonding areas are transversely separated is employed to integrate the silicon waveguide with an InGaAsP multi-quantum well distributed feedback structure. When electrically pumped at room temperature, the laser operates with a threshold current density of 2.9 kA/cm^2 and a slope efficiency of 0.02 W/A. The 1542nm laser output exits mainly from the Si waveguide.  相似文献   

8.
Periodic microstructures on silicon bulk axe formed by the irradiation of the femtosecond laser with the laser wavelength of 800 nm and the pulse length of 130 fs. We investigate the surface periodic ripple structures produced by femtosecond laser treatment. The effects of feedrate of sample, v, on laser-induced surface topography are studied. We find that the femtosecond laser produce periodic ripples of the sub-micron level on silicon surface. At the same time, we realize the optimal conditions to produce these surface structures. When choosing NA = 0.3, and v = 2000μm/s or 3000μm/s, we find a series of periodic-structure ripples where the spacing is about 120 nm and the width is about 45nm. The experimental results indicate that femtosecond laser treatment can produce line arrays on the sub-micron level, which is a positive factor for fabricating grating and other optical applications in nanoscales.  相似文献   

9.
We propose and demonstrate the velocity transfer spectroscopy of a V-type energy structure with Rb atoms at 420nm transition. The weak oscillator strength of a lower excited state for V-type energy structure atoms limits the high signal-to-noise ratio of atomic laser spectroscopy, which can be usually realized by optical-optical double-resonance or double-resonance optical pumping for cascade-type energy structure atoms. For ^87Rb atoms, the weak 420 nm transition spectrum between the energy level of 5^2S1/2 and 6^2P3/2 is transferred to the spectrum on lower excited states at 780nm with strong oscillator strength, which is recorded by a 780 nm probe laser. This method, which & similar to the electron-shelving detection method, at a certain degree can indirectly measure a higher excited state transition with weak oscillator strength for any V-type energy structure of atoms by transferring the transition spectrum information of the very weak oscillator strength to the strong oscillator strength in an optical-optical double-resonance configuration.  相似文献   

10.
An efficient and high-power diode-laser single-end-pumped Nd:YVO4 laser with cw emission at 1342nm is presented. With a crystal single-end-pumped by a fibre-coupled diode laser, an output power of 7.36 W is obtained from the laser cavity of concave-convex, eorresponding to an optical-to-optical conversion efficiency of 32.8%. The laser is operated in TEM00 mode with small rms noise amplitude of 0.3%. This represents, to the best of our knowledge, the highest power obtained from a diode-laser single-end-pumped Nd:YVO4 cw laser at 1342nm 80 far.  相似文献   

11.
Stimulated emission has been observed from oxide structure of silicon when optically excited by 514 nm laser. The photoluminescence (PL) pulse has a Lorentzian shape with a full width at half maximum (FWHM) of 0.5-0.6 nm. The twin peaks at 694 nm and 692 nm are dominated by stimulated emission which can be demonstrated by its threshold behavior and transition from sub-threshold to linear evolution in light emission. The gain coefficient from the evolution of the peak-emission intensity as a function of the optically pumped sample length has been measured. The oxide structure was fabricated by laser irradiation and annealing treatment on silicon. A model for explaining the stimulated emission has been proposed in which the trap states of the interface between oxide of silicon and porous nanocrystal play an important role.  相似文献   

12.
 经激光辐照和高温退火后能够在硅基上生成氧化多孔硅结构。用514 nm的激光泵浦,观测到该多孔硅的受激辐射。当激励强度超过阈值时,在650~750 nm区域有很强的受激发光峰。这些受激发光峰的半高宽小于0.5 nm。激光辐照和高温退火后,在样品上能形成某些特殊的氧化结构。在傅里叶红外光谱分析中,显示有硅氧双键或硅氧桥键在硅表面形成。计算结果表明:当硅氧双键或硅氧桥键形成时,电子的陷阱态出现在纳晶硅的带隙中。价带顶和陷阱态之间的粒子数反转是解释这种受激辐射的关键。  相似文献   

13.
We have investigated the optical properties of silicon pillars formed by cumulative nanosecond pulsed excimer laser irradiation of single-crystal silicon in vacuum created under different repetition rates. The changes in optical characteristics of silicon pillar were systematically determined and compared as the number of KrF laser shots was increased from 1 to 15,000.The results show that silicon pillar PL curves exhibit a blue band around 430 nm and an ultraviolet band peaking at 370 nm with the vanishing of the green emission at 530 nm. A correlation between the intensity of the blue PL band and the intensity of the Si-O absorption bands has been exploited to explain such emission, whereas, the origin of the ultraviolet band may be attributed to different types of defects in silicon oxide.  相似文献   

14.
黄伟其  吕泉  王晓允  张荣涛  于示强 《物理学报》2011,60(1):17805-017805
纳秒脉冲激光在氮气、氧气和空气等不同氛围中加工出的硅量子点都有光致荧光(PL)的发光增强效应,并且在700 nm波长附近观察到了受激辐射.在不同氛围下生成的样品有几乎相同的PL光谱分布,其原因是不同氛围下加工出的样品带隙中有相同的电子态分布.计算结果显示:当硅量子点表面被氮或氧钝化后,在带隙中能够形成几乎相同的局域电子态,这种局域电子态可以俘获来自导带的电子,从而形成亚稳态,这是PL发光增强乃至产生受激辐射的关键因素. 关键词: 硅量子点 PL光谱 发光增强 电子局域态  相似文献   

15.
 将功率密度约为0.5 J·s-1·cm-2、脉冲宽度约为8 ns、束斑直径为0.045 mm、波长为1 064 nm的YAG激光束照射在硅样品表面打出小孔,在孔内的侧壁上形成较规则的网孔状结构;该结构有很强的光致荧光,其强度比该样品的瑞利散射强;发光峰中心约在700 nm处。在无氧化的环境里用激光加工出的硅样品几乎无发光,这证实了氧在光致荧光增强上起着重要作用。用冷等离子体波模型来解释孔侧壁网孔状结构形成的机理,并用量子受限-发光中心模型来解释纳米网孔壁结构的强荧光效应。当激光辐照时间为9 s时,孔洞侧壁上的网孔状结构较稳定,且有较强的光致荧光。  相似文献   

16.
采用水热刻蚀技术制备多孔硅粉末。紫外激光244 nm激发时,多孔硅呈现出310 nm的强紫外发光。随着研磨时间的延长,多孔硅结构消失,紫外发光带也随之消失。氧气热处理后,多孔硅表面被氧化生成氧化硅薄层,同样造成紫外发光带的消失。我们认为310 nm紫外发光来源于硅纳米结构中电子和空穴的直接禁带结构辐射复合。  相似文献   

17.
采用Nd:YAG纳秒脉冲激光对单晶硅在空气中进行辐照,研究了表面微结构在不同能量密度和扫描速度下的演化情况。扫描电子显微镜测量表明,激光在相对较低能量密度下辐照硅表面诱导出鱼鳞状波纹结构,激光能量密度相对较大时,诱导出絮状多孔的不规则微结构。光致荧光谱(PL)表明,激光扫描区域在710 nm附近有荧光发射。用氢氟酸腐蚀掉样品表面的SiOx后,荧光峰的强度显著降低,说明SiOx在光致发光增强上起重要作用。能量色散X射线谱(EDS)表明氧元素的含量随激光能量密度的增大而增加。研究表明:纳秒激光的能量密度和扫描速度对微结构形成起着决定性作用,改变了硅材料表面微结构尺寸,增大了光吸收面积; 氧元素在光致发光增强上起重要作用,微构造硅和SiOx对光致荧光的发射都有贡献。  相似文献   

18.
林捷  王如志  盖红  王波  严辉 《发光学报》2015,36(1):27-32
采用脉冲激光沉积(PLD)方法在湿法腐蚀后的Si(100)衬底上制备了Y2O3:Bi,Yb减反转光薄膜。所制备的薄膜在300~800 nm波长范围内的平均反射率最低至5.28%,同时在晶体硅太阳能电池最佳响应范围内的980 nm附近表现出了良好的下转光特性。与非减反下转光薄膜相比较,具有减反结构的Y2O3:Bi,Yb下转换薄膜的转光强度有了明显的提升。随着衬底腐蚀时间在一定范围内的延长,Bi3+和Yb3+的发射峰强度线性增大。该减反转光薄膜为太阳能电池效率提高提供了一种简单可行的方法。  相似文献   

19.
钨酸锌晶体的受激拉曼散射和光致发光研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用皮秒532nm 激光激发,研究了ZnWO4晶体的受激拉曼散射和本征荧光发射.在SRS光谱中观察到一级(558.7nm)和二级(588.6nm)斯托克斯光,线宽分别为130和77cm-1, 一级斯托克斯光的抽运阈值为6.8mJ.在532nm激光抽运下ZnWO4晶体的荧光光谱呈现出由能量为2.30,2.45和2.83eV的3个高斯分量组成的独特结构.光致发光表明晶体具有从400nm到650nm的宽带本征发光,其峰值波长为472.0nm,相应于钨氧之间的辐射跃迁. 关键词: 晶体 钨酸锌 受激拉曼散射 闪烁体  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号